The SAS (Side-Angle-Side) postulate.
That's not a postulate. It's a theorem. And you have stated it.
similar
I assume "throemand" is your fail at spelling "theorem and".The theorem states that if two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
You can use a variety of postulates or theorems, among others: SSS (Side-Side-Side) ASA (Angle-Side-Angle - any two corresponding sides* and a corresponding angle) SAS (Side-Angle-Side - the angle MUST be between the two sides, except:) RHS (Right angle-Hypotenuse-Side - this is only ASS which works) * if two corresponding angles are the same, then the third corresponding angle must also be the same (as the angles of a triangle always sum to 180°), and that can be substituted for one angle of ASA to get AAS or SAA.
Yes, triangles ABC and DEF are congruent if all corresponding sides and angles are equal. The congruence postulate that applies in this case could be the Side-Angle-Side (SAS) postulate, which states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the triangles are congruent. Other applicable postulates include Side-Side-Side (SSS) and Angle-Angle-Side (AAS), depending on the known measurements.
The SAS Postulate states if two sides and the included angle of a triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.
That's not a postulate. It's a theorem. And you have stated it.
The Angle Side Angle postulate( ASA) states that if two angles and the included angle of one triangle are congruent to two angles and the included side of another triangle, then these two triangles are congruent.
similar
two
SSS is a postulate used in proving that two triangles are congruent. It is also known as the "Side-Side-Side" Triangle Congruence Postulate. It states that if all 3 sides of a triangle are congruent to another triangles 3 sides, then both triangles are congruent.
Yes, it does.
SAA Congruence Postulate states that if two angles and a side opposite one of the angles are the same, the triangles are congruent.
I assume "throemand" is your fail at spelling "theorem and".The theorem states that if two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
You can use a variety of postulates or theorems, among others: SSS (Side-Side-Side) ASA (Angle-Side-Angle - any two corresponding sides* and a corresponding angle) SAS (Side-Angle-Side - the angle MUST be between the two sides, except:) RHS (Right angle-Hypotenuse-Side - this is only ASS which works) * if two corresponding angles are the same, then the third corresponding angle must also be the same (as the angles of a triangle always sum to 180°), and that can be substituted for one angle of ASA to get AAS or SAA.
The AA similarity postulate states that if two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar. However, the AA congruence postulate is not needed because knowing two angles of one triangle are congruent to two angles of another triangle doesn't guarantee that the triangles are congruent, as the side lengths can still be different.
Yes, triangles ABC and DEF are congruent if all corresponding sides and angles are equal. The congruence postulate that applies in this case could be the Side-Angle-Side (SAS) postulate, which states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the triangles are congruent. Other applicable postulates include Side-Side-Side (SSS) and Angle-Angle-Side (AAS), depending on the known measurements.