It's 4.66666... (the 6's never end.)
The 6's in 0.626 are related to their respective place values in the decimal number. In the number 0.626, the first 6 represents 6 tenths (or 6/10), the second 6 represents 2 hundredths (or 2/100), and the third 6 represents 6 thousandths (or 6/1000). Each 6 is positioned based on its place value in the decimal number, contributing to the overall value of 0.626.
1.25
The answer to that would be 11.11 because you only use the first 2 #s then after that the first 2 #s after the decimal point
55.466666666666667x15= about 832 55.466666666 is a nonterminating decimal, so the 6's will go on forever The proper way to write it is with a line over the first two 6's so you do not have to keep writing 6.
2/7 is a recurring decimal; it repeats 6 digits: 2/7 = 0.285714285714...
2 ÷ 3 = 0.6666 repeating
2/300 = 2 ÷ 300 = 0.006667
It's 4.66666... (the 6's never end.)
40/80 simplifies to 1/2, or 0.5 as a decimal, and 50% as a percentage.
8.667 is the conventional way to write 8 2/3 in a decimal form. 2/3 is actually .666666... (an unending stream of 6's). It's generally rounded off after the thousandth's place. Alternatively, you can write 8.6 with a dot over the 6. This signifies that the 6 keeps repeating.
When you find the percent of something you first make it into a decimal and then you take it and move the decimal over to the right 2 time and then you add the 0's and that is your answer. ex: .3 move over to the right 2 time and then add the 0's
The 6's in 0.626 are related to their respective place values in the decimal number. In the number 0.626, the first 6 represents 6 tenths (or 6/10), the second 6 represents 2 hundredths (or 2/100), and the third 6 represents 6 thousandths (or 6/1000). Each 6 is positioned based on its place value in the decimal number, contributing to the overall value of 0.626.
62.5%
1.25
16 2/3 is a reduced mixed number as a decimal it is 16.666666666666666666 (This is approx. since the 6's after the decimal are infinite. The most acturate way to write this number is as 16 2/3.
The answer to that would be 11.11 because you only use the first 2 #s then after that the first 2 #s after the decimal point