a crescent
It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2
A cylinder is one possible answer.
None. Using Euler's formula v - e + f = 2, where v is vertices, e is edges, and f is faces, we see that for your question f = 3. No solid figure can have less than 4 faces (a tetrahedron).
a cylinder has 2 faces and 2 edges. :)
a crescent
A Cylinder.
It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2It is not any kind of simply connected solid figure because it does not satisfy the Euler characteristic which requires thatFaces + Vertices = Edges + 2
triangular prism
A cylinder is one possible answer.
solid with 2 edges is a cylinder
a cylinder
A cylinder.
None. Using Euler's formula v - e + f = 2, where v is vertices, e is edges, and f is faces, we see that for your question f = 3. No solid figure can have less than 4 faces (a tetrahedron).
a cylinder has 2 faces and 2 edges. :)
a cylinder
23