The object and its image are congruent.
A transformation that does not produce a congruent image is a dilation. While dilations change the size of a figure, they maintain the shape, meaning the resulting image is similar but not congruent to the original. In contrast, transformations such as translations, rotations, and reflections preserve both size and shape, resulting in congruent images.
The transformation in which the preimage and its image are congruent is called a rigid transformation or isometry. This type of transformation preserves distances and angles, meaning that the shape and size of the figure remain unchanged. Common examples include translations, rotations, and reflections. As a result, the original figure and its transformed version are congruent.
True. An isometry is a transformation that preserves distances and angles, meaning that the preimage and image are congruent. Examples of isometries include translations, rotations, and reflections, all of which maintain the shape and size of geometric figures.
similar
isometry
Dilation - the image created is not congruent to the pre-image
The object and its image are congruent.
A transformation that does not produce a congruent image is a dilation. While dilations change the size of a figure, they maintain the shape, meaning the resulting image is similar but not congruent to the original. In contrast, transformations such as translations, rotations, and reflections preserve both size and shape, resulting in congruent images.
A dilation (or scaling) is a transformation that does not always result in an image that is congruent to the original figure. While translations, rotations, and reflections always produce congruent figures, dilations change the size of the figure, which means the image may be similar to, but not congruent with, the original figure.
Congruent in all three cases.
An enlargement but the angle sizes will remain the same.
An enlargement transformation
An isometry is a transformation in which the original figure and its image are congruent. Shape remains constant as size increases.
The transformation process is an 'enlargement'
similar
A translation of 4 units to the right followed by a dilation of a factor of 2