answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

What are the similarities and difference of substitution method and linear combinations method?

Both the substitution method and the linear combinations method (or elimination method) are techniques used to solve systems of linear equations. In the substitution method, one equation is solved for one variable, which is then substituted into the other equation. In contrast, the linear combinations method involves adding or subtracting equations to eliminate one variable, allowing for the direct solution of the remaining variable. While both methods aim to find the same solution, they differ in their approach to manipulating the equations.


How do you solve system of equations by using the substitution method?

To solve a system of equations using the substitution method, first, solve one of the equations for one variable in terms of the other. Then, substitute this expression into the other equation to eliminate that variable. This will result in a single equation with one variable, which can be solved for its value. Finally, substitute this value back into the original equation to find the value of the other variable.


What are the ways to solve a system of linear equations in two variables?

the substitution method in which you take each variable and you find out the value and then plug it into the original equation.the adding and subtracting method in which you subtract\add equations to take out a variable and you can figure out what the other variable is. then you also substitute that into that into the original variable


How do you slove systems of two equations?

To solve a system of two equations, you can use one of three methods: substitution, elimination, or graphing. In the substitution method, you solve one equation for one variable and substitute that expression into the other equation. In the elimination method, you manipulate the equations to eliminate one variable by adding or subtracting them. Graphing involves plotting both equations on a graph and identifying their point of intersection, which represents the solution.


How do you decide whether to use elimination or subsitution to solve a three-variable system?

There is no simple answer. Sometimes, the nature of one of the equations lends itself to the substitution method but at other times, elimination is better. If they are non-linear equations, and there is an easy substitution then that is the best approach. With linear equations, using the inverse matrix is the fastest method.

Related Questions

When using the substitution method to solve a nonlinear system of equations you should first see if you can one variable in one of the equations in the system.?

When using the substitution method to solve a nonlinear system of equations, the first step is to isolate one variable in one of the equations, if possible. This allows you to express that variable in terms of the other variable. You can then substitute this expression into the other equation, transforming the system into a single equation with one variable, which can be solved more easily. Once you find the value of one variable, you can substitute it back to find the other variable.


What are the similarities and difference of substitution method and linear combinations method?

Both the substitution method and the linear combinations method (or elimination method) are techniques used to solve systems of linear equations. In the substitution method, one equation is solved for one variable, which is then substituted into the other equation. In contrast, the linear combinations method involves adding or subtracting equations to eliminate one variable, allowing for the direct solution of the remaining variable. While both methods aim to find the same solution, they differ in their approach to manipulating the equations.


How do you solve system of equations by using the substitution method?

To solve a system of equations using the substitution method, first, solve one of the equations for one variable in terms of the other. Then, substitute this expression into the other equation to eliminate that variable. This will result in a single equation with one variable, which can be solved for its value. Finally, substitute this value back into the original equation to find the value of the other variable.


What are the ways to solve a system of linear equations in two variables?

the substitution method in which you take each variable and you find out the value and then plug it into the original equation.the adding and subtracting method in which you subtract\add equations to take out a variable and you can figure out what the other variable is. then you also substitute that into that into the original variable


Why is substitution the best method in solving systems of equations?

It is not always the best method, sometimes elimination is the way you should solve systems. It is best to use substitution when you havea variable isolated on one side


How do you slove systems of two equations?

To solve a system of two equations, you can use one of three methods: substitution, elimination, or graphing. In the substitution method, you solve one equation for one variable and substitute that expression into the other equation. In the elimination method, you manipulate the equations to eliminate one variable by adding or subtracting them. Graphing involves plotting both equations on a graph and identifying their point of intersection, which represents the solution.


How do you decide whether to use elimination or subsitution to solve a three-variable system?

There is no simple answer. Sometimes, the nature of one of the equations lends itself to the substitution method but at other times, elimination is better. If they are non-linear equations, and there is an easy substitution then that is the best approach. With linear equations, using the inverse matrix is the fastest method.


Can solve a system of linear equation by substitution?

Yes, a system of linear equations can be solved by substitution. This method involves solving one of the equations for one variable and then substituting that expression into the other equation. This process reduces the system to a single equation with one variable, which can then be solved. Once the value of one variable is found, it can be substituted back to find the other variable.


When solving by the substitution method what happens when one variable cancels out?

That's exactly the purpose of the substitution method ... to get an equation with one less variable. When you have it, you solve it for the variable that's left.


What has the author Dan Feng written?

Dan Feng has written: 'Tensor-GMRES method for large sparse systems of nonlinear equations' -- subject(s): Algorithms, Jacobi matrix method, Nonlinear equations, Tensors


How can you use substitution method to solve a system of equations that does not have a variable with a coefficient of 1 or - 1?

To use the substitution method on a system of equations without a variable with a coefficient of 1 or -1, you first isolate one variable in one of the equations. For instance, if you have the equations (2x + 3y = 6) and (4x - y = 5), you can solve the first equation for (y), resulting in (y = (6 - 2x)/3). Next, substitute this expression for (y) into the second equation, allowing you to solve for (x). Finally, substitute the value of (x) back into one of the original equations to find the corresponding value of (y).


Use the substitution method to solve the system of equations Enter your answer as an ordered pair?

Use the substitution method to solve the system of equations. Enter your answer as an ordered pair.y = 2x + 5 x = 1