The proof that the square root of 5 is irrational is exactly the same as the well-known proof that the square root of 2 is irrational - except using 5 in place of 2. We can prove a more general result: the square root of any prime is irrational.
First of all, we require the lemma:
for any prime p, and integer x,
p|x2 ⇒ p|x
That is, if x2 is divisible by p, then so is x.
Proof:
The prime factorization of x2 necessarily contains p at least once, since it is divisible by p. But it also has to contain an even power of every prime, since it is the prime factorization of a square. Therefore, it contains p at least twice, and its square root, x, contains p at least once: that is, x is divisible by p.
Now, given a prime p, assume that its square root is rational. Then, it may be written in the form a/b, where a and b have no common factors (that is, the fraction a/b is in lowest terms). This is always possible for any nonzero rational number. Since this quantity is the square root of p, its square equals p, that is
(a/b)2 = p
a2/b2 = p
a2 = pb2
Now, pb2 is a multiple of p, so a2 must be too. And, using the result above, this means that a must be a multiple of p also. Thus, there exists an integer c such that
a = PC
Then,
(PC)2 = pb2
p2c2 = pb2.
Since p is not zero, we may divide both sides by p to obtain
PC2 = b2
That is, b2 is divisible by p also, and thus b is divisible by p.
Since a and b were both divisible by p, the fraction a/b could not have been in lowest terms, which contradicts our initial assumption. Therefore, the square root of p cannot possibly be a rational number. Since 5 is prime, the proof is complete.
Chat with our AI personalities
Most high school algebra books show a proof (by contradiction) that the square root of 2 is irrational. The same proof can easily be adapted to the square root of any positive integer, that is not a perfect square. You can find the proof (for the square root of 2) on the Wikipedia article on "irrational number", near the beginning of the page (under "History").
sqrt(2) is irrational. 3 is rational. The product of an irrational and a non-zero rational is irrational. A more fundamental proof would follow the lines of the proof that sqrt(2) is irrational.
irrational
It is a irrational number. Because the square root of every imperfect square is irrational number.
Search for the proof for the irrationality of the square root of 2. The same reasoning applies to any positive integer that is not a perfect square. In summary, the square root of any positive integer is either a whole number, or - as in this case - it is irrational.