answersLogoWhite

0


Best Answer

If you should mean x-1 = 2y

Solved for x:

x = 2y + 1

Solved for y:

y = (x-1)/2

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Which expression is equivalent to x-1 y2?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

M is the midpoint of pq verify that this is the midpoint by using the distance formula to show tha pm equals mq?

Let P(x1, y1), Q(x2, y2), and M(x3, y3).If M is the midpoint of PQ, then,(x3, y3) = [(x1 + x2)/2, (y1 + y2)/2]We need to verify that,√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2] = √[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]Let's work separately in both sides. Left side:√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2]= √[[(x1/2 + x2/2)]^2 - (2)(x1)[(x1/2 + x2/2)) + x1^2] + [(y1/2 + y2/2)]^2 - (2)(y1)[(y1/2 + y2/2)] + y1^2]]= √[[(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 - (x1)^2 - (x1)(x2) + (x1)^2 +[(y1)^2]/4 + [(y1)(y2)]/2 + [(y2)^2]/4 - (y1)^2 - (y1)(y2) + (y1)^2]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Right side:√[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]= √[[(x2)^2 - (2)(x2)[(x1/2 + x2/2)] + [(x1/2 + x2/2)]^2 + [(y2)^2 - (2)(y2)[(y1/2 + y2/2)] + [(y1/2 + y2/2)]^2]]= √[[(x2)^2 - (x1)(x2) - (x2)^2 + [(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 + (y2)^2 - (y1)[(y2) - (y2)^2 + [(y1)^2]/4) + [(y1)(y2)]/2 + [(y2)^2]/4]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Since the left and right sides are equals, the identity is true. Thus, the length of PM equals the length of MQ. As the result, M is the midpoint of PQ


X1 plus y2?

4


How do you solve for slope from two points and a graph?

Points: (x1, y1) and (x2, y2) Slope: y1-y2/x1-x2


What is the mathematical equation of slope?

The slope between two points, (x1, y1) and (x2, y2) is: (y1 - y2) / (x1 - x2)


How do you find linear equations with just coordinates?

if we take the (x1,y1),(x2,y2) as coordinates the formula was (x-x1)/(x2-x1)=(y-y1)/(y2-y1)

Related questions

How do you draw a square using line command?

Line (x1, y1, x2, y1); Line (x2, y1, x2, y2); Line (x2, y2, x1, y2); Line (x1, y2, x1, y1);


M is the midpoint of pq verify that this is the midpoint by using the distance formula to show tha pm equals mq?

Let P(x1, y1), Q(x2, y2), and M(x3, y3).If M is the midpoint of PQ, then,(x3, y3) = [(x1 + x2)/2, (y1 + y2)/2]We need to verify that,√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2] = √[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]Let's work separately in both sides. Left side:√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2]= √[[(x1/2 + x2/2)]^2 - (2)(x1)[(x1/2 + x2/2)) + x1^2] + [(y1/2 + y2/2)]^2 - (2)(y1)[(y1/2 + y2/2)] + y1^2]]= √[[(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 - (x1)^2 - (x1)(x2) + (x1)^2 +[(y1)^2]/4 + [(y1)(y2)]/2 + [(y2)^2]/4 - (y1)^2 - (y1)(y2) + (y1)^2]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Right side:√[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]= √[[(x2)^2 - (2)(x2)[(x1/2 + x2/2)] + [(x1/2 + x2/2)]^2 + [(y2)^2 - (2)(y2)[(y1/2 + y2/2)] + [(y1/2 + y2/2)]^2]]= √[[(x2)^2 - (x1)(x2) - (x2)^2 + [(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 + (y2)^2 - (y1)[(y2) - (y2)^2 + [(y1)^2]/4) + [(y1)(y2)]/2 + [(y2)^2]/4]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Since the left and right sides are equals, the identity is true. Thus, the length of PM equals the length of MQ. As the result, M is the midpoint of PQ


What is y2-y1x2-x1?

The equation (y2-y1)/(x2-x1) is known as the point-slope formula. It gives the slope for a line given two points of coordinatesÊ(x1, y1) and (x2, y2).


What is the formula to calculate the slope?

It's m = y2 - y1/ x2- x1 It's m equals y2 minus y1 over x2 minus x1


X1 plus y2?

4


How do you solve for slope from two points and a graph?

Points: (x1, y1) and (x2, y2) Slope: y1-y2/x1-x2


What is the mathematical equation of slope?

The slope between two points, (x1, y1) and (x2, y2) is: (y1 - y2) / (x1 - x2)


How do you find linear equations with just coordinates?

if we take the (x1,y1),(x2,y2) as coordinates the formula was (x-x1)/(x2-x1)=(y-y1)/(y2-y1)


What formula is used to find the length between two points in a coordinate plane?

It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]It is the Pythagorean distance formmula.If P = (x1, y1) and Q = (x2, y2) thenDistance between P and Q = sqrt[(x1 - x2)2 + (y1 - y2)2]


Which expression is equivalent to 6x2y2 plus 24x3y?

It is the same as: 3y24x+y26x2 that is if y2 and 6x2 means y2 and 6x2 respectively


When using the slope formula does it have to be (y2-y1)(x2-x1) or can it be (y1-y2)(x1-x2)?

Oh, don't you worry, friend! When using the slope formula, whether you do (y2-y1)/(x2-x1) or (y1-y2)/(x1-x2), the answer will be the same! It's all about the difference in vertical and horizontal values, and as long as you stay consistent in your calculations, you'll find the slope just fine. Just trust your instincts and enjoy the process of solving the equation.


How do you get the distance?

The distance between two points, (x1,y1) , (x2,y2) = squareroot[(x2-x1)2 + (y2-y1)2]