The Interquartile Range because it affects how much space is left between the median on either side....So there you go! I hope that I helped You... : D
Removing an outlier has a more significant impact on the range than on the median. The range, defined as the difference between the maximum and minimum values, can be dramatically altered if the outlier is either the highest or lowest value. In contrast, the median, which represents the middle value of a dataset, is less affected by extreme values, especially in larger datasets. Thus, the range is more sensitive to the removal of outliers compared to the median.
When a data set has an outlier, the best measure of center to use is the median, as it is less affected by extreme values compared to the mean. For measure of variation (spread), the interquartile range (IQR) is preferable, since it focuses on the middle 50% of the data and is also resistant to outliers. Together, these measures provide a more accurate representation of the data's central tendency and variability.
Outliers
the mode is 8 more than the outlier.
The Interquartile Range because it affects how much space is left between the median on either side....So there you go! I hope that I helped You... : D
cuz when it does it gon mess it up in a way where u cant use it no more * * * * * That is a rubbish answer. By definition, all outliers lie outside the interquartile range and therefore cannot affect it.
By definition a quarter of the observations are below the lower quartile and a quarter are above the upper quartile. In all, therefore, half the observations lie outside the interquartile range. Many of these will be more than the inter-quartile range (IQR) away from the median (or mean) and they cannot all be outliers. So you take a larger multiple (1.5 times) of the interquartile range as the boudary for outliers.
the interquartile range is not sensitive to outliers.
When a data set has an outlier, the best measure of center to use is the median, as it is less affected by extreme values compared to the mean. For measure of variation (spread), the interquartile range (IQR) is preferable, since it focuses on the middle 50% of the data and is also resistant to outliers. Together, these measures provide a more accurate representation of the data's central tendency and variability.
An interquartile range is a measurement of dispersion about the mean. The lower the IQR, the more the data is bunched up around the mean. It's calculated by subtracting Q1 from Q3.
Outliers
An outlier can be very large or small. its usally 1.5 times the mean. they can be seen with a cat and whisker box * * * * * The answer to the question is YES. "Its usually 1.5 times the mean" is utter rubbish - apart from the typo. If a distribution had a mean of zero, such as the standard Normal distribution, then almost every observation would be greater than 1.5 times the mean = 0 and so almost every observation would be an outlier! No. There is no universally agreed definition for an outlier but one contender is values that are more than 1.5 times the interquartile range away from the median.
The outlier is capable of affecting mean median mode and range it affects mean because the average has changed if affects median because you have to cross out 1 more letter it doesn't affect mode it does affect range because an outlier is a number that i far away from the other numbers * * * * * It does not affect the median.
Yes there can be more then one outlier
Outliers are basically numbers, in a set of numbers, that don't belong in that set and/or that stand out. For example, in the data set {3, 5, 4, 4, 6, 2, 25, 5, 6, 2} the value of 25 is an outlier. For a set of numerical data (a set of numbers), any value (number) that is markedly smaller or larger than other values is an outlier. This is the qualitative definition. Mathematically, a quantitative definition often given is that an outliers is any number that is more than 1.5 times the interquartile range away from the median. However, this is not definitive and in some cases other definitions will be used.
the mode is 8 more than the outlier.