Chat with our AI personalities
x0 = 1 because any number raised to the power of 0 is always equal to 1
A function f(x), of a variable x, is said to have a limiting value of f(xo) as x approaches x0 if, given any value of epsilon, however small, it is possible to find a value delta such that |f(x) - f(x0)| < epsilon for all x such that |x - x0| < delta.The second inequality can be one-sided.
Any number to the power zero is equal to one. That can be derived from the following index law: xa*xb = xa+b (x not zero) Now let b = 0 so that the above becomes xa*x0 = xa+0 so xa*x0 = xa (since a+0 = a) That is, any number multiplied by x0 is the number itself. That can be true only if x0 is the multiplicative identity, that is, only if x0 = 1.
It is a consequence of the definition of the index laws. xa * xb = xa+b If you put b = 0 in the above equation, then you get xa * x0 = xa+0 But a+0 = a so that the right hand side becomes xa Thus the equation now reads xa * x0 = xa For that to be true for all x, x0 must be the identity element for multiplication. That is x0 = 1 for all x.
The integral of e-2x is -1/2*e-2x + c but I am not sure what "for x0" in the question means.