Those would be the squares of prime numbers: 22, 32, 52, etc.
Chat with our AI personalities
None. √1976 is "44 and a bit" → first perfect square ≥ 1976 is 452 = 2025 As 1976 is not a perfect square and the first perfect square greater than 1976 is 2025, and 2025 is greater than 2013, there are no perfect squares from 1976 to 2013.
Yes. The square root of a fraction is the square root of the numerator over the square root of the denominator. First simplify the fraction (making mixed numbers into improper fractions). Now consider the numerator and denominator separately as whole numbers. Only perfect squares (the squares of whole numbers) have rational square roots. If either, or both, of the numerator and denominator is not a perfect square, the square root of the fraction will be irrational √(11/6) = (√11)/(√6). Neither 11 nor 6 is a perfect square, thus √(11/6) is irrational.
To find the smallest number that 360 needs to be multiplied by to get a perfect square, we first factorize 360 into its prime factors: 2^3 * 3^2 * 5. To make it a perfect square, we need to pair up these factors. Since 2 and 5 are not paired, the smallest number we need to multiply 360 by is 5, making it 1800 (2^3 * 3^2 * 5^2), which is a perfect square.
Numbers that are considered perfect squares are integers that can be expressed as the product of an integer with itself. For example, 4, 9, and 16 are perfect squares because they are the square of 2, 3, and 4, respectively.
1024