x2 + y2 = r2
Since there are no equations following, the answer must be "none of them".
The center point is (5,4)
x2 + y2 = R2
This starts with the collocation circle to go through the three points on the curve. First write the equation of a circle. Then write three equations that force the collocation circle to go through the three points on the curve. Last, solve the equations for a, b, and r.
The formula for the center of a circle is given by the coordinates ((h, k)) in the standard equation of a circle, which is ((x - h)^2 + (y - k)^2 = r^2). Here, ((h, k)) represents the center of the circle, and (r) is the radius. If the equation is presented in a different form, you can derive the center by rearranging the equation to match the standard form.
Since there are no equations following, the answer must be "none of them".
x2+y2=7^2newtest3
The center point is (5,4)
x2 + y2 = 9
In a circle, the circumference and diameter vary directly. Which of the following equations would allow you to find the diameter of a circle with a circumference of 154 if you know that in a second circle the diameter is 14 when the circumference is 44?
The formula for the equation of a circle is (x – h)2+ (y – k)2 = r2, where (h, k) represents the coordinates of the center of the circle, and r represents the radius of the circle.
x2 + y2 = R2
This is referred to as a chord. If the chord passes through the center of the circle, it represents the diameteror width of the circle.
x2 + y2 = 25radius of 10?x2 + y2 = 100
This starts with the collocation circle to go through the three points on the curve. First write the equation of a circle. Then write three equations that force the collocation circle to go through the three points on the curve. Last, solve the equations for a, b, and r.
-40
The formula for the center of a circle is given by the coordinates ((h, k)) in the standard equation of a circle, which is ((x - h)^2 + (y - k)^2 = r^2). Here, ((h, k)) represents the center of the circle, and (r) is the radius. If the equation is presented in a different form, you can derive the center by rearranging the equation to match the standard form.