The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.
pig benis
A t-test is a inferential statistic. Other inferential statistics are confidence interval, margin of error, and ANOVA. An inferential statistic infers something about a population. A descriptive statistic describes a population. Descriptive statistics include percentages, means, variance, and regression.
+ Linear regression is a simple statistical process and so is easy to carry out. + Some non-linear relationships can be converted to linear relationships using simple transformations. - The error structure may not be suitable for regression (independent, identically distributed). - The regression model used may not be appropriate or an important variable may have been omitted. - The residual error may be too large.
Q statistic
The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.
The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.
pig benis
A t-test is a inferential statistic. Other inferential statistics are confidence interval, margin of error, and ANOVA. An inferential statistic infers something about a population. A descriptive statistic describes a population. Descriptive statistics include percentages, means, variance, and regression.
yyuuyuhyhyuhyuhyu
Assuming you mean the t-statistic from least squares regression, the t-statistic is the regression coefficient (of a given independent variable) divided by its standard error. The standard error is essentially one estimated standard deviation of the data set for the relevant variable. To have a very large t-statistic implies that the coefficient was able to be estimated with a fair amount of accuracy. If the t-stat is more than 2 (the coefficient is at least twice as large as the standard error), you would generally conclude that the variable in question has a significant impact on the dependent variable. High t-statistics (over 2) mean the variable is significant. What if it's REALLY high? Then something is wrong. The data points might be serially correlated. Assuming you mean the t-statistic from least squares regression, the t-statistic is the regression coefficient (of a given independent variable) divided by its standard error. The standard error is essentially one estimated standard deviation of the data set for the relevant variable. To have a very large t-statistic implies that the coefficient was able to be estimated with a fair amount of accuracy. If the t-stat is more than 2 (the coefficient is at least twice as large as the standard error), you would generally conclude that the variable in question has a significant impact on the dependent variable. High t-statistics (over 2) mean the variable is significant. What if it's REALLY high? Then something is wrong. The data points might be serially correlated.
Regression analysis is based on the assumption that the dependent variable is distributed according some function of the independent variables together with independent identically distributed random errors. If the error terms were not stochastic then some of the properties of the regression analysis are not valid.
includes both positive and negative terms.
Random error, measurement error, mis-specification of model (overspecification or underspecification), non-normality, plus many more.
+ Linear regression is a simple statistical process and so is easy to carry out. + Some non-linear relationships can be converted to linear relationships using simple transformations. - The error structure may not be suitable for regression (independent, identically distributed). - The regression model used may not be appropriate or an important variable may have been omitted. - The residual error may be too large.
Ah, the stochastic error term and the residual are like happy little clouds in our painting. The stochastic error term represents the random variability in our data that we can't explain, while the residual is the difference between the observed value and the predicted value by our model. Both are important in understanding and improving our models, just like adding details to our beautiful landscape.
There are many possible reasons. Here are some of the more common ones: The underlying relationship is not be linear. The regression has very poor predictive power (coefficient of regression close to zero). The errors are not independent, identical, normally distributed. Outliers distorting regression. Calculation error.