Want this question answered?
Equilateral.
The orthocentre (where the perpendicular bisectors of the sides meet).
they are all points of concurrency
well yes, obviously. A triangle constitutes of three points, and you can always find a plane that traverses those three points.
I think the question you mean to ask is, "Do three collinear points make a triangle?" Linear is simply the adjective form of "line", "collinear" is used to describe points that lie on the same line. (Two points not only can be collinear, but always are, so it makes little sense to describe them as such).Collinear points cannot make a triangle, a triangle requires three noncollinear points.
A point of concurrency is a point where three or more lines, segments, or rays intersect or meet. Common points of concurrency in geometry include the centroid, circumcenter, incenter, and orthocenter of a triangle.
Equilateral.
The orthocentre (where the perpendicular bisectors of the sides meet).
In short, the orthocenter really has no purpose. There are 4 points of Concurrency in Triangles: 1) The Centroid - the point of concurrency where the 3 medians of a triangle meet. This point is also the triangle's center of gravity. 2) The Circumcenter - the point of concurrency where the perpendicular bisectors of all three sides of the triangle meet. This point is the center of the triangle's circumscribed circle. 3) The Incenter - the point of concurrency where the angle bisectors of all three angles of the triangle meet. Like the circumcenter, the incenter is the center of the inscribed circle of a triangle. 4) The Orthocenter - the point of concurrency where the 3 altitudes of a triangle meet. Unlike the other three points of concurrency, the orthocenter is only there to show that altitudes are concurrent. Thus, bringing me back to the initial statement.
the centroid. here are all the points of concurrency: perpendicular bisector- circumcenter altitudes- orthocenter angle bisector- incenter median- centroid hope that was helpful :)
Circumcenter, Incenter and Centroid.
The point of concurrency (intersection) of 3 perpendicular bisectors (the lines that cut the sides of the triangle in half at a 90 degree angle...think of a plus sign--+) of a triangle. It's equidistant to the 3 vertices (points or ends) of the triangle.
The centroid, circumcenter and orthocenter are the 3 points of concurrency that always lie on a line.
A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted ABC.In Euclidean geometry any three non-collinear points determine a unique triangle and a unique plane (i.e. a two-dimensional Euclidean space).the secondary parts of the trianglemedian - a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite sideangle bisector - a segment which bisects an angle and whose endpoints are a vertex of the triangle and a point on the opposite sidealtitude - a segment from the vertex of the triangle perpendicular to the line containing the opposite sideperpendicular bisector - a line whose points are equidistant from the endpoints of the given sideincenter - the point of concurrency of the three angle bisectors of the trianglecentroid - the point of concurrency of the three medians of the triangleorthocenter - the point of concurrency of the three altitudes of the trianglecircumcenter - the point of concurrency of the three perpendicular bisectors of the sides of the triangle
a\jghfgkk
A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted ABC.the secondary parts are at the bottom.the secondary parts of the trianglemedian - a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite sideangle bisector - a segment which bisects an angle and whose endpoints are a vertex of the triangle and a point on the opposite sidealtitude - a segment from the vertex of the triangle perpendicular to the line containing the opposite sideperpendicular bisector - a line whose points are equidistant from the endpoints of the given side.incenter - the point of concurrency of the three angle bisectors of the trianglecentroid - the point of concurrency of the three medians of the triangleorthocenter - the point of concurrency of the three altitudes of the trianglecircumcenter - the point of concurrency of the three perpendicular bisectors of the sides of the triangle .by merivic lacaya and acefg123ZNNHS Student. Toronto university student
they are all points of concurrency