(a + b) = a^2 + 2ab + b^2 (a - b)^2 = a^2 - 2ab + b^2 or you can work like this: [a + (-b)]^2 = a^2 + 2a(-b) + (-b)^2 (a - b)^2 = a^2 - 2ab + b^2
1. Square of a binomial (a+b)^2 = a^2 + 2ab + b^2 carry the signs as you solve 2. Square of a Trinomial (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc carry the sings as you solve 3. Cube of a Binomial (a+b)^3 = a^3 + 3(a^2)b + 3a(b^2) + b^3 4. Product of sum and difference (a+b)(a-b) = a^2 - b^2 5. Product of a binomial and a special multinomial (a+b)(a^2 - ab + b^2) = a^3-b^3 (a-b)(a^2 + ab + b^2) = a^3-b^3
This is a proof that uses the cosine rule and Pythagoras' theorem. As on any triangle with c being the opposite side of θ and a and b are the other sides: c^2=a^2+b^2-2abcosθ We can rearrange this for θ: θ=arccos[(a^2+b^2-c^2)/(2ab)] On a right-angle triangle cosθ=a/h. We can therefore construct a right-angle triangle with θ being one of the angles, the adjacent side being a^2+b^2-c^2 and the hypotenuse being 2ab. As the formula for the area of a triangle is also absinθ/2, when a and b being two sides and θ the angle between them, the opposite side of θ on the right-angle triangle we have constructed is 4A, with A being the area of the original triangle, as it is 2absinθ. Therefore, according to Pythagoras' theorem: (2ab)^2=(a^2+b^2-c^2)^2+(4A)^2 4a^2*b^2=(a^2+b^2-c^2)^2+16A^2 16A^2=4a^2*b^2-(a^2+b^2-c^2)^2 This is where it will start to get messy: 16A^2=4a^2*b^2-(a^2+b^2-c^2)(a^2+b^2-c^2) =4a^2*b^2-(a^4+a^2*b^2-a^2*c^2+a^2*b^2+b^4-b^2*c^2- a^2*c^2-b^2*c^2+c^4) =4a^2*b^2-(a^4+2a^2*b^2-2a^2*c^2+b^4-2b^2*c^2+c^4) =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.1) We will now see: (a+b+c)(-a+b+c)(a-b+c)(a+b-c) =(-a^2+ab+ac-ab+b^2+bc-ac+bc+c^2)(a^2+ab-ac-ab-b^2+bc+ac+bc-c^2) =(-a^2+b^2+2bc+c^2)(a^2-b^2+2bc-c^2) =-a^4+a^2*b^2-2a^2*bc+a^2*c^2+a^2*b^2-b^4+2b^3*c-b^2*c^2+2a^2*bc-2b^3*c+(2bc)^2-2bc^3+a^2*c^2-b^2*c^2+2bc^3-c^4 =-a^4+2a^2*b^2+2a^2*c^2-b^4+(2bc)^2-c^4-2b^2*c^2 =-a^4+2a^2*b^2+2a^2*c^2-b^4+2b^2*c^2-c^4 (Eq.2) And now that we know that Eq.1=Eq.2, we can make Eq.1=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) Therefore: 16A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c) A^2=(a+b+c)(-a+b+c)(a-b+c)(a+b-c)/16 =[(a+b+c)/2][(-a+b+c)/2][(a-b+c)/2][(a+b-c)/2] And so if we let s=(a+b+c)/2 A^2=s(s-a)(s-b)(s-c)
It can if you divide by zero. 1. Let a and b be equal non-zero quantities a = b 2. Multiply both sides by a a^2 = ab 3. Subtract b^2 a^2 - b^2 = ab - b^2 4. Factor both sides (a - b)(a + b) = b(a - b) 5. Divide out (a - b) a + b = b 6. Since a = b ... b + b = b 7. Combine like terms on the left 2b = b 8. Divide by the non-zero b 2 = 1
Basically, you have the following linear equation system: a = b + 2 a + b = a * b (I assume "v" is a typo for "b"). Substituting (b+2) for a in the second equation, we get: 2b+2 = b(b+2) = b^2+2b Subtracting (2b) from both sides, we get: 2 = b^2 and we can conclude that: b = sqrt(2) which is not an integer (in fact, it is not even rational). And it is pretty easy to prove that sqrt(2) is not an integer, if needed.
A design team from Northrop Grumman and Boeing.
Type your answer here... The B-2 Stealth bomber was created proudly in the U.S Air Force branch of the military
Northrop Grumman built the B-2.
Northrop Grumman built the B-2.
At the moment, the B-2 Spirit is the only stealth bomber in service.
See website: B-2 Bomber
Area 51
See website: B-2 bomber
Simple answer, you can't.
B-2 Spirit
tom hickens
Wichita Stealth was created in 1999.