Using the remainder theorem:- The function of x becomes f(-2) because the divisor is x+2 Substitute -2 for x in the dividend: 2x3+x-7 When: f(-2) = 2(-2)3+(-2)-7 = -25 Then: -25 is the remainder
The remainder ( R ) when a polynomial ( p(x) ) is divided by ( (x - 2) ) can be found using the Remainder Theorem. According to this theorem, the remainder is equal to ( p(2) ). Thus, to find ( R ), simply evaluate the polynomial at ( x = 2 ): ( R = p(2) ).
Do the division, and see if there is a remainder.
No, a corollary follows from a theorem that has been proven. Of course, a theorem can be proven using a corollary to a previous theorem.
A corollary.
Using the remainder theorem:- The function of x becomes f(-2) because the divisor is x+2 Substitute -2 for x in the dividend: 2x3+x-7 When: f(-2) = 2(-2)3+(-2)-7 = -25 Then: -25 is the remainder
The remainder ( R ) when a polynomial ( p(x) ) is divided by ( (x - 2) ) can be found using the Remainder Theorem. According to this theorem, the remainder is equal to ( p(2) ). Thus, to find ( R ), simply evaluate the polynomial at ( x = 2 ): ( R = p(2) ).
Do the division, and see if there is a remainder.
The remainder theorem states that if you divide a polynomial function by one of it's linier factors it's degree will be decreased by one. This theorem is often used to find the imaginary zeros of polynomial functions by reducing them to quadratics at which point they can be solved by using the quadratic formula.
No, a corollary follows from a theorem that has been proven. Of course, a theorem can be proven using a corollary to a previous theorem.
To find the number, we need to consider the remainders when the number is divided by 5 and 4. Let's denote the number as x. From the information given, we have two equations: x ≡ 1 (mod 5) and x ≡ 2 (mod 4). By solving these congruences simultaneously using the Chinese Remainder Theorem, we find that x ≡ 21 (mod 20). Therefore, the number you are thinking of is 21.
A corollary.
No. A corollary is a statement that can be easily proved using a theorem.
A corollary is a statement that can easily be proved using a theorem.
No. A corollary is a statement that can be easily proved using a theorem.
There is no formula for a theorem. A theorem is a proposition that has been or needs to be proved using explicit assumptions.
Using the remainder theorem:- f(x) = 4x3+6x2+3x+2 f(x) becomes f(-3/2) or f(-1.5) because the divisor is 2x+3 f(-1.5) = 4(-1.5)3+6(-1.5)2+3(-1.5)+2 = -5/2 or -2.5 So the remainder is -2.5