answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

When adding polynomials what do you do to the exponents?

You keep them the same if they have different bases


Are polynomials a closed set under addition?

Yes, polynomials are a closed set under addition. This means that if you take any two polynomials and add them together, the result will also be a polynomial. The sum of two polynomials retains the structure of a polynomial, as it still consists of terms with non-negative integer exponents and real (or complex) coefficients.


What is alike of polynomials and nonpolynomial?

Polynomials and nonpolynomial expressions both represent mathematical functions and can be used to model relationships between variables. They share the property of being defined over real or complex numbers, and both can appear in equations and inequalities. However, polynomials consist solely of non-negative integer exponents on their variables, while nonpolynomials may include variables raised to fractional or negative exponents, transcendental functions, or other forms that do not fit the polynomial criteria.


Is monomials are polynomials?

Yes, monomials are a specific type of polynomial. A monomial is a polynomial that consists of only one term, which can include variables raised to non-negative integer exponents and coefficients. In contrast, a polynomial can have multiple terms, such as binomials (two terms) or trinomials (three terms). Therefore, all monomials are polynomials, but not all polynomials are monomials.


Is every algebraic expression is a polynomial?

Not every algebraic expression is a polynomial. A polynomial consists of terms that are non-negative integer powers of variables, combined using addition, subtraction, and multiplication. In contrast, algebraic expressions can include terms with negative or fractional exponents, such as (x^{-1}) or (x^{1/2}), which do not qualify as polynomials. Therefore, while all polynomials are algebraic expressions, not all algebraic expressions are polynomials.

Related Questions

Why do you think the definition for polynomials is so restrictive?

The definition for polynomials is very restrictive. This is because it will give more information. It excludes radicals, negative exponents, and fractional exponents. When these are included, the expression becomes rational and not polynomial.


Do all polynomials have exponents?

Yes.


How do you make working model of maths on polynomials?

Polynomials are the simplest class of mathematical expressions. The expression is constructed from variables and constants, using only the operations of addition, subtraction, multiplication and non-negative integer exponents.


Polynomials are written with the exponents of the terms in order?

descending


When adding polynomials what do you do to the exponents?

You keep them the same if they have different bases


Are polynomials a closed set under addition?

Yes, polynomials are a closed set under addition. This means that if you take any two polynomials and add them together, the result will also be a polynomial. The sum of two polynomials retains the structure of a polynomial, as it still consists of terms with non-negative integer exponents and real (or complex) coefficients.


What is alike of polynomials and nonpolynomial?

Polynomials and nonpolynomial expressions both represent mathematical functions and can be used to model relationships between variables. They share the property of being defined over real or complex numbers, and both can appear in equations and inequalities. However, polynomials consist solely of non-negative integer exponents on their variables, while nonpolynomials may include variables raised to fractional or negative exponents, transcendental functions, or other forms that do not fit the polynomial criteria.


When you multiply polynomials what do you do with the exponents?

Add them up providing that the bases are the same.


Polynomials are written with the exponents of the terms in what type of order?

descending form


Is negative integers are polynomials?

No.


When can you say that the term is a term of polynomials?

If a term consists of one or more of: a numerical coefficientnon-negative integer exponents of variable(s),then it is a term of a polynomial. If a term consists of one or more of: a numerical coefficientnon-negative integer exponents of variable(s),then it is a term of a polynomial. If a term consists of one or more of: a numerical coefficientnon-negative integer exponents of variable(s),then it is a term of a polynomial. If a term consists of one or more of: a numerical coefficientnon-negative integer exponents of variable(s),then it is a term of a polynomial.


Is monomials are polynomials?

Yes, monomials are a specific type of polynomial. A monomial is a polynomial that consists of only one term, which can include variables raised to non-negative integer exponents and coefficients. In contrast, a polynomial can have multiple terms, such as binomials (two terms) or trinomials (three terms). Therefore, all monomials are polynomials, but not all polynomials are monomials.