By definition an empty set cannot have any elements, otherwise it would not be empty!
Think of a set as a container (like a box). The members of the set are those things inside it; there can be lots of things in a box, or just one, or none - when there are no items in the box it is empty, hence a set with no members is the empty set.
A subset is made by taking some of the items from the set (or box) and putting them into another: many, one or no items can be taken to make the subset. It is always possible to take no items from a set, thus the empty set is a subset of ALL sets.
For example, consider the set of people drinking coffee with 6 members: there are 3 latte drinkers, 1 cappuccino drinker, 2 espressos drinkers; various subsets can be made, eg:
* those drinking lattes (3 members);
* those drinking cappuccinos (1 member); or
* those drinking tea (no members: the empty set - tea is not coffee and the original set is those who drink coffee).
Chat with our AI personalities
No. An empty set is a subset of every set but it is not an element of every set.
Any set has the empty set as subset A is a subset of B if each element of A is an element of B For the empty set ∅ the vacuum property holds For every element of ∅ whatever property holds, also being element of an arbitrary set B, therefore ∅ is a subset of any set, even itself ∅ has an unique subset: itself
The trivial subsets of a set are those subsets which can be found without knowing the contents of the set. The empty set has one trivial subset: the empty set. Every nonempty set S has two distinct trivial subsets: S and the empty set. Explanation: This is due to the following two facts which follow from the definition of subset: Fact 1: Every set is a subset of itself. Fact 2: The empty set is subset of every set. The definition of subset says that if every element of A is also a member of B then A is a subset of B. If A is the empty set then every element of A (all 0 of them) are members of B trivially. If A = B then A is a subset of B because each element of A is a member of A trivially.
Yes,an empty set is the subset of every set. The subset of an empty set is only an empty set itself.
The only subset of an empty set is the empty set itself.