To make them look more familiar and approachable to beginning algebra students. It's completely unnecessary with the advent of calculators though.
To solve it by coordinate graphs you would take a point from the line and plug in the X and Y value into the equations and or inequalities.
Yes
Linear inequalities and linear equations are similar in that both involve linear expressions and use the same variables in a linear format. They can be represented graphically, where linear equations depict straight lines, while linear inequalities represent regions of the coordinate plane. Additionally, both types of mathematical statements can be solved using similar algebraic techniques, though solutions for inequalities often involve ranges of values rather than specific points. Ultimately, they both express relationships between variables, but inequalities include a relational aspect (greater than or less than) that equations do not.
Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.
The solution of a system of linear equations consists of specific points where the equations intersect, typically yielding a unique point, infinitely many points, or no solution at all. In contrast, the solution of a system of linear inequalities represents a region in space, encompassing all points that satisfy the inequalities, often forming a polygonal shape in two dimensions. While equations define boundaries, inequalities define areas that can include multiple solutions. Thus, the nature of their solutions differs fundamentally: precise points versus expansive regions.
It makes it allot less confusing. But, that is just my opinion.
Even if you keep the decimal, later on you will still have to remove it. It is just an easier way to solve the equation.
Solving linear systems means to solve linear equations and inequalities. Then to graph it and describing it by statical statements.
There are many simple questions in everyday life that can be modelled by linear equations and solved using linear programming.
They are not. An inequality cannot, by definition, be the same as an equation.
To solve it by coordinate graphs you would take a point from the line and plug in the X and Y value into the equations and or inequalities.
Yes
Because linear equations are based on algebra equal to each other whereas literal equations are based on solving for one variable.
Linear equations or inequalities describe points x y that lie on a circle.
Solving linear equations is hard sometimes.
because you just do!
Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.