dilation
A dilation with a scale factor of 0.5 reduces the size of the figure to half its original dimensions, resulting in a smaller figure. In contrast, a dilation with a scale factor of 2 enlarges the figure to twice its original dimensions, creating a larger figure. Therefore, the two dilations produce figures that are similar in shape but differ significantly in size, with the scale factor of 2 yielding a figure that is four times the area of the figure dilated by 0.5.
A dilation would produce a similar figure.
In mathematics, dilation refers to a transformation that alters the size of a geometric figure while keeping its shape and proportions intact. It involves scaling the figure up or down from a fixed point known as the center of dilation, using a scale factor that determines how much the figure is enlarged or reduced. Dilation can be applied in various contexts, including geometry and coordinate transformations.
scale Or Dilation
Dilation
dilation
Dilation is a transformation in which a figure is enlarged or reduced.
A dilation would produce a similar figure.
scale Or Dilation
No it makes the figure bigger or smaller than the original
Dilation.
A variable
i trying to figure that out
Geometric dilation (size change, typically expansion) does not change the shape of a figure, or its center location, only the size.
A transformation in which the figure grows larger is called dilation. In dilation, every point of the figure is moved away from a fixed center point by a scale factor greater than one. This results in a proportional increase in the size of the figure while maintaining its shape.
translation