A growth curve is often stepped rather than smooth due to the presence of distinct phases in the growth process, such as lag, exponential, and stationary phases. These phases reflect changes in environmental conditions, resource availability, or biological limits, causing periods of rapid growth followed by stabilization or slow growth. Additionally, external factors like competition, predation, or disease can introduce abrupt changes in growth rates, contributing to the stepped appearance. This pattern helps illustrate the dynamic and adaptive nature of biological systems.
A fraction is a single value. At is neither a graph nor a curve.
The curve must have a derivative at every point (except its end point).
Absolute growth rate(agr) curve enables us to express the growth of organisms in terms f growth rate. In most organism, agr increases steadily until reaches a maximum and then, gradually falls. Agr is a bell-shaped curve.
I am not sure what situation you are talking about; usually such curves should be smooth.
A curve
A radioactive decay curve is not a smooth curve because radioactive decay events are random and occur at discrete times rather than continuously. This randomness causes the curve to have fluctuations and jagged edges, giving it a non-smooth appearance.
A smooth curve.A smooth curve.A smooth curve.A smooth curve.
It does not. It has a smooth curve. That is called an arc.
growth curve
The J-curve typically refers to a type of growth pattern that resembles the letter "J," characterized by a rapid increase after an initial period of slow growth. This pattern can be associated with exponential growth when resources are unlimited, leading to a sharp upward curve. In contrast, logistic growth starts with a similar initial phase but eventually levels off as it approaches carrying capacity, resulting in an S-shaped curve. Therefore, the J-curve itself is more closely associated with exponential growth rather than logistic growth.
I think the answer is realized growth because it also includes the effect of environmental resistance and causes it to become S shaped unlike the theoretical growth curve.
A logistic growth curve differs from an exponential growth curve primarily in its shape and underlying assumptions. While an exponential growth curve represents unrestricted growth, where populations increase continuously at a constant rate, a logistic growth curve accounts for environmental limitations and resources, leading to a slowdown as the population approaches carrying capacity. This results in an S-shaped curve, where growth accelerates initially and then decelerates as it levels off near the maximum sustainable population size. In contrast, the exponential curve continues to rise steeply without such constraints.
A growth curve is a graphical representation of how the age of an organism increases over time.
A population growth curve shows the change in the size of a population over time. It typically consists of four phases: exponential growth, plateau, decline, and equilibrium. The curve is often represented by an S-shaped logistic curve, which shows the pattern of population growth leveling off as it reaches carrying capacity.
A population's growth curve most closely resembles an "S" shaped curve, known as the logistic growth curve. Initially, the curve rises slowly as the population grows, followed by a period of rapid growth, before leveling off as the environment's carrying capacity is reached and growth stabilizes.
The classic "S" shaped curve that is characteristic of logistic growth.
The classic "S" shaped curve that is characteristic of logistic growth.