When one refers to the strength of a magnetic field, they're usually referring to the scalar magnitude of the magnetic field vector, so no.
Vector.
A magnetic field is neither: it is a vector field with both direction and quantity.
Charge is not a vector.
Er.. I'm not Einstein ;-) but I'll try and put you on the right track... The term "magnetic vector" refers to the amplitude and direction of the magnetic field associated with an electromagnetic wave. Hope this helps!
When one refers to the strength of a magnetic field, they're usually referring to the scalar magnitude of the magnetic field vector, so no.
Vector.
It is a way of representing the magnetic force at a point in the field. The magnitude and direction of the vector represents the strength and the direction of the magnetic force acting on a charged particle in the field.
A magnetic field is neither: it is a vector field with both direction and quantity.
Charge is not a vector.
Magnetism is a force. Vector notation is required to indicate magnitude and direction of a force.
Er.. I'm not Einstein ;-) but I'll try and put you on the right track... The term "magnetic vector" refers to the amplitude and direction of the magnetic field associated with an electromagnetic wave. Hope this helps!
The dimensions of magnetic field are given in units of Tesla (T), which is equivalent to kg/s^2A. Magnetic field is a vector quantity with both magnitude and direction.
Magnetic induction is a vector quantity because it has both magnitude and direction. The direction of magnetic induction is given by the right-hand rule, which determines the direction of the magnetic field produced by a current-carrying conductor. This direction is crucial when considering the effects of magnetic fields on charged particles and other magnetic materials.
Magnetism is a force. Vector notation is required to indicate magnitude and direction of a force.
The magnetic flux through a surface is maximum when the magnetic field is perpendicular to the surface and the surface area is also perpendicular to the field. This occurs when the magnetic field is passing through the surface at a 90-degree angle, resulting in the maximum number of magnetic field lines intersecting the surface area.
Both act only on charged particles (ions, protons, or electrons). ?However, an electric field (which generates an ELECTRIC FORCE) acts on a particle in the same direction as the field, given by the equation:F(vector) = q*E(vector)The resulting force vector is in the same direction as the field vector (for positive charges).A magnetic field generates a force ONLY on a MOVING charge, and ONLY if the charge is moving non-parallel to the magnetic field:F(vector) = q*v(vector) x B(vector)Because of the cross-product, the magnetic force is a direction perpendicular to the velocity and magnetic field vectors (use the right hand rule to figure out the direction of magnetic force). ?The particle will still have momentum from its initial velocity, so an applied magnetic field will (pretty much) always make the particle move in a curved path.