The technical answer is that displacement is the vector sum of the distances.
An example to illustrate the difference in less technical terms, distance travelled in one direction added to the same distance in the opposite direction will result in the total distance being twice the distance of each leg but the total displacement is 0.
After traversing 1/2 of a circular track with radius 'R', the body has effectively moved from one end of a diameter to the other end of the same diameter. The distance traveled is 1/2 the circumference = (pi)D/2 = (pi)R. The displacement is D = 2R. The ratio of displacement to distance = (2R)/(piR) = 2/pi= 0.63662 (rounded), independent of 'R'.
A degree is an angular measure and cannot be measured in millimetres. A 1 degree rise can be interpreted as a ratio of a rise (in millimetres) per a distance of horizontal displacement.
5 to 1 is greater
compression ratio = compressed size / uncompressed size the ratio should be between 1 and 0 (multiply with 100 to get the ratio in percent) a ratio greater than 1 means, the compressed size is actually greater than the uncompressed size a ratio just below 1 means bad compression the lower the ratio, the better the compression
Any point where x/y is greater than 1 has a ratio larger than one. For example, the point (2, 1) has a ratio of 2:1, or 2. (3, 1) has a ratio of 3, etc.
The ratio of the magnitudes of distance and displacement is always equal to or greater than 1. This is because distance is a scalar quantity that represents the total length of the path traveled, while displacement is a vector quantity that represents the straight-line distance between the initial and final positions.
The ratio of distance to displacement is always equal to or greater than 1. This is because distance will always be equal to or greater than displacement, as distance is the total length of the path traveled while displacement is the difference between the final and initial positions.
The numerical ratio of displacement to distance for a moving body is equal to or greater than 1. This is because displacement is the shortest distance between the initial and final positions of the body, while distance is the total length of the path traveled by the body. In cases where the body moves in a straight line, the displacement and distance are equal, resulting in a ratio of 1.
The ratio is 1.
The modulus of the ratio of distance to displacement is always less than or equal to 1, as displacement is the shortest distance between two points. The unit for this ratio is dimensionless, as it is a pure number without units.
The numerical ratio of displacement to distance for a moving object is 1 when the object moves in a straight line in a single direction. This means that the displacement is equal to the distance traveled. If the object moves in a more complex path, the ratio may vary depending on the trajectory.
The ratio of the distance covered to the displacement of a particle moved along a semi-circle of radius r is π. This is because the distance covered around the semi-circle is the circumference (2πr), while the displacement is the diameter of the circle (2r). The ratio is therefore (2πr) / (2r) = π.
Greater compression = greater fuel consumption = greater power
The ratio of an object's displacement to the interval during which the displacement occurred gives you the object's average velocity. It is calculated by dividing the displacement by the time interval. Average velocity is a vector quantity that indicates both speed and direction of the object's motion.
Velocity ratio is the ratio of the distance moved by the effort to the distance moved by the load in a simple machine. It represents the trade-off between force and distance in a machine. A higher velocity ratio indicates that the machine can move the load a greater distance with a smaller input force.
After traversing 1/2 of a circular track with radius 'R', the body has effectively moved from one end of a diameter to the other end of the same diameter. The distance traveled is 1/2 the circumference = (pi)D/2 = (pi)R. The displacement is D = 2R. The ratio of displacement to distance = (2R)/(piR) = 2/pi= 0.63662 (rounded), independent of 'R'.
These have to do with the hydraulic density. In automobile, the density increases therefore making the hydraulic ratio to displace more than any hydraulic ratio in a displacement.