Want this question answered?
Be notified when an answer is posted
8.49mA
For an object moving at a variable velocity you:calculate the square of the velocityfind its mean valuecalculate its square root.If the velocity is constant then the RMS velocity has the same value.
Multiple subs wired together must be the same coil type and impedance. If they’re not, the power won’t divide evenly between them, and some subs would probably be over-powered while others get under-powered. If you want to run different types of subs in a system, each type needs to have its own separate amp. Then, multiply the number of subs you have by the RMS rating of each, to get their total RMS rating. You want to make sure the amp you choose will supply no more than the sub system’s total RMS rating. Figure out the possible total impedance(s) that the subs can be wired together to form. (SVC = single voice coil, 1 pair of terminals; DVC = dual voice coil, 2 pairs of terminals.) 1 SVC 2-ohms can only have 2 ohms of impedance 1 SVC 4-ohms can only have 4 ohms of impedance 1 DVC 2-ohms can have 1 ohm or 4 ohms of impedance 1 DVC 4-ohms can have 2 ohms or 8 ohms of impedance 2 SVC 2-ohms can have 1 ohm or 4 ohms of impedance 2 SVC 4-ohms can have 2 ohms or 8 ohms of impedance 2 DVC 2-ohms can have 2 ohms or 8 ohms of impedance 2 DVC 4-ohms can have 1 ohm or 4 ohms of impedance 3 SVC 2-ohms can have 6 ohms of impedance 3 SVC 4-ohms can have 1.3 ohms of impedance 3 DVC 2-ohms can have 1.3 ohms or 3 ohms of impedance 3 DVC 4-ohms can have 2.7 ohms or 6 ohms of impedance 4 SVC 2-ohms can have 2 ohms or 8 ohms of impedance 4 SVC 4-ohms can have 1 ohm or 4 ohms of impedance 4 DVC 2-ohms can have 1 ohm or 4 ohms of impedance 4 DVC 4-ohms can have 2 ohms or 8 ohms of impedance Look for an amplifier that can put out power up to the RMS wattage at an impedance load the subs can be wired to form. 8 ohms — figure on the amp putting out half the power it would at 4 ohms 6 ohms — figure on the amp putting out three-quarters of the power it would at 4 ohms 3 ohms — figure on the amp putting out the average of what it would at 2 ohms and at 4 ohms 2.7 ohms — figure the same as for 3 ohms, and add a few watts 1.3 ohms — use the 1-ohm spec and take away a few watts Example: You have two Alpine S Series S-W8D4 8" subwoofers and you want the right amp for them. They are DVC 4-ohm subs rated at 300 watts RMS each. Two 300 watts RMS subs together need a maximum total of 600 watts RMS. Using the chart in Step 2, 2 DVC 4-ohm subs can be wired together to form a 1-ohm, a 4-ohm, or a 16-ohm load. The last is too high a load to be practical, so you’ll look for an amp that can put out up to 600 watts RMS into either a 4-ohm load, or a 1-ohm impedance load: up to 600 watts RMS x 1 at 4 ohms, or up to 600 watts RMS x 1 at 1 ohm Among Crutchfield’s selection of amplifiers you’ll find: Memphis Audio PRXA600.1 — 600 watts RMS x 1 at 1 ohm JL Audio JD1000/1 — 600 watts RMS x 1 at 4 ohms Kicker KEY500.1 — 500 watts RMS x 1 at 1 ohm Any one of these high-quality amplifiers would work well with those subs. It doesn’t matter which impedance an amp plays through — 600 watts RMS through a 4-ohm load produces the same volume as 600 watts RMS through a 1-ohm load. You have a Memphis Audio SRX500D.1 amplifier and you want it to drive two subwoofers The amp is capable of 350 watts RMS x 1 at 4 ohms and 500 watts RMS x 1 at 2 ohms. Let’s say you choose to maximize the amp’s potential and want the system to put out 500 watts RMS. This means your subs have to be wired to form a total impedance of 2 ohms. Two subs on a 500 watts RMS amp will want about 250 watts RMS each. So you’ll look for subs each rated for 250 watts RMS or more. Using the chart in Step 3, for two subwoofers, a final 2-ohm load can be achieved with either two SVC 4-ohm subs or two DVC 2-ohm subs. So, you’ll look for two subs that are either SVC 4-ohms or DVC 2-ohms, rated for at least 250 watts RMS each: 2 SVC 4-ohms, at least 250 watts RMS, or 2 DVC 2-ohms, at least 250 watts RMS Among Crutchfield’s selection of subwoofers you’ll find: You have a Memphis Audio SRX500D.1 amplifier and you want it to drive two subwoofers The amp is capable of 350 watts RMS x 1 at 4 ohms and 500 watts RMS x 1 at 2 ohms. Let’s say you choose to maximize the amp’s potential and want the system to put out 500 watts RMS. This means your subs have to be wired to form a total impedance of 2 ohms. Two subs on a 500 watts RMS amp will want about 250 watts RMS each. So you’ll look for subs each rated for 250 watts RMS or more. Using the chart in Step 3, for two subwoofers, a final 2-ohm load can be achieved with either two SVC 4-ohm subs or two DVC 2-ohm subs. So, you’ll look for two subs that are either SVC 4-ohms or DVC 2-ohms, rated for at least 250 watts RMS each: 2 SVC 4-ohms, at least 250 watts RMS, or 2 DVC 2-ohms, at least 250 watts RMS Among Crutchfield’s selection of subwoofers you’ll find: Alpine W10S4 10" — SVC 4-ohm, 250 watts RMS JL Audio 12W0v3-4 12" — SVC 4-ohm, 300 watts RMS Kicker 44CWCS104 — SVC 4-ohm, 300 watts RMS Rockford Fosgate R2D2-10 10" — DVC 2-ohms, 250 watts RMS Hope this helps! (:
Since the light bulb is purely resistive (has very little reactance), you can just measure the RMS voltage across the light bulb (usually 120 V) and the RMS current going through the light bulb. Power (P) is:P = VRMS x IRMSwatts
As far as I know, I do not think there are any standards for rating PMPO because different manufactures give diffferent numbers for pmpo for the same rating in watts RMS. Even manufactures of only amplifiers give pmpo ratings without taking into account which type of speaker/s a particular amp will be driving. Given the large difference in efficiency of different speaker systems and large difference in output wattage and current capability of different amplifier systems I am doubtful as to weather there can be a standardized system of numbers to come up with a rating for pmpo relating to watts RMS.
ANSWER: The peak to peak voltage can be found by multiplying 120 v AC x 2.82= 339.41
To find the root mean square (rms) value for a voltage given in peak-to-peak (Vpp), you need to divide the Vpp value by 2√2. In this case, the Vpp is 300mV, which is equivalent to 0.3V. Dividing 0.3V by 2√2 ≈ 2.828, the rms value is approximately 0.106 V.
The peak of a waveform that is purely sinusoidal (no DC offset) will be RMS * sqrt(2). This is the peak to neutral value. If you are looking for peak to peak, multiply by 2.
peak value =rms value*1.414 =220*1.414 =311v
rms. dat means Vp-p will be 325V.
You can work this out yourself. For a sinusoidal waveform the rms value is 0.707 times the peak value. As you quote a peak-to-peak value, this must be halved, first. Incidentally, the symbol for volt is 'V', not 'v'.
When you say holdhold supply of 230volts, you are referring to the RMS value, not the peak value.
RMS is the root mean square value.(in alternating current only)
Assuming "quoted value" to be RMS value, or average, [what you would see on a meter], the peak would be that value times 1.414. Going backward, peak times .707 is RMS.
A square wave has the highest RMS value. RMS value is simply root-mean-square, and since the square wave spends all of its time at one or the other peak value, then the RMS value is simply the peak value. If you want to quantify the RMS value of other waveforms, then you need to take the RMS of a series of equally spaced samples. You can use calculus to do this, or, for certain waveforms, you can use Cartwright, Kenneth V. 2007. In summary, the RMS value of a square wave of peak value a is a; the RMS value of a sine wave of peak value a is a divided by square root of 2; and the RMS value of a sawtooth wave of peak value a is a divided by cube root of 3; so, in order of decreasing RMS value, you have the square wave, the sine wave, and the sawtooth wave. For more information, please see the Related Link below.
you take the peak voltage and divide it by the square root of 2 100/1.414= 70.7 volts rms This is true only for sine wave. For other waveforms like a triangle signal it is different.
To convert DC values to AC values if you are wanting RMS values they are the same. 100V DC and 100V AC (RMS) are the same "value". If you want to know the Peak-To-Peak AC value you would multiply the RMS value by 1.414. So 100V AC RMS equals 141.4 V Peak to Peak.