Some partial differential equations do not have analytical solutions. These can only be solved numerically.
The answer will depend very much on the nature of the equation. The steps required for a one-step equation are very different from the steps required for a partial differential equation. For some equations there are no straightforward analytical methods of solution: only numerical methods.
Partial differential equations are great in calculus for making multi-variable equations simpler to solve. Some problems do not have known derivatives or at least in certain levels in your studies, you don't possess the tools needed to find the derivative. So, using partial differential equations, you can break the problem up, and find the partial derivatives and integrals.
Partial differential equations are mathematical equations that involve two or more independent variables, an unknown function, and partial derivatives of the unknown function. Even the explanation is confusing! If, however, anyone chooses to learn about PDE there are classes offered at any institution of higher learning.
What's the question?
Tarek P. A. Mathew has written: 'Domain decomposition methods for the numerical solution of partial differential equations' -- subject(s): Decomposition method, Differential equations, Partial, Numerical solutions, Partial Differential equations
Some partial differential equations do not have analytical solutions. These can only be solved numerically.
David L. Colton has written: 'Analytic theory of partial differential equations' -- subject(s): Differential equations, Partial, Numerical solutions, Partial Differential equations 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations
Elemer E. Rosinger has written: 'Generalized solutions of nonlinear partial differential equations' -- subject(s): Differential equations, Nonlinear, Differential equations, Partial, Nonlinear Differential equations, Numerical solutions, Partial Differential equations 'Distributions and nonlinear partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations, Theory of distributions (Functional analysis)
Granville Sewell has written: 'The numerical solution of ordinary and partial differential equations' -- subject(s): Data processing, Differential equations, Mathematics, Nonfiction, Numerical solutions, OverDrive, Partial Differential equations 'Computational Methods of Linear Algebra' -- subject(s): OverDrive, Mathematics, Nonfiction
S. H. Lui has written: 'Numerical analysis of partial differential equations' -- subject(s): Partial Differential equations, Numerical solutions
Stephen F Wornom has written: 'Critical study of higher order numerical methods for solving the boundary-layer equations' -- subject(s): Boundary layer, Differential equations, Partial, Numerical solutions, Partial Differential equations
George Francis Denton Duff has written: 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'Differential equations of applied mathematics' -- subject(s): Differential equations, Differential equations, Partial, Mathematical physics, Partial Differential equations
Fritz John has written: 'Partial differential equations, 1952-1953' -- subject(s): Differential equations, Partial, Partial Differential equations 'Fritz John collected papers' 'Partial differential equations' 'On finite deformations of an elastic material' 'Plane waves and spherical means applied to partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'On behavior of solutions of partial differential equations'
A. J. Werthen has written: 'Optimal moving grids for time-dependent partial differential equations' -- subject(s): Differential equations, Numerical grid generation (Numerical analysis)
G. Evans has written: 'Analytic methods for partial differential equations' -- subject(s): Differential equations, Partial, Numerical solutions, Partial Differential equations
Sin-Chung Chang is known for his work on applied mathematics and computational fluid dynamics. He has authored several books and research papers on these subjects, focusing on numerical methods and their applications in various engineering fields.