answersLogoWhite

0

The larger your sample size, the less variance there will be.

For instance, your information is going to be much more substantial if you took 1000 samples over 10 samples.

User Avatar

Wiki User

16y ago

What else can I help you with?

Related Questions

When using the distribution of sample mean to estimate the population mean what is the benefit of using larger sample sizes?

The variance decreases with a larger sample so that the sample mean is likely to be closer to the population mean.


What does it mean to say that the sample variance provides an unbiased estimate of the population variance?

It means you can take a measure of the variance of the sample and expect that result to be consistent for the entire population, and the sample is a valid representation for/of the population and does not influence that measure of the population.


How does the number of repetitions effect the shape of the normal distribution?

When we discuss a sample drawn from a population, the larger the sample, or the large the number of repetitions of the event, the more certain we are of the mean value. So, when the normal distribution is considered the sampling distribution of the mean, then more repetitions lead to smaller values of the variance of the distribution.


How do you calculate distribution of sample means?

The sample mean is distributed with the same mean as the popualtion mean. If the popolation variance is s2 then the sample mean has a variance is s2/n. As n increases, the distribution of the sample mean gets closer to a Gaussian - ie Normal - distribution. This is the basis of the Central Limit Theorem which is important for hypothesis testing.


What is the proof that the sample variance is an unbiased estimator?

The proof that the sample variance is an unbiased estimator involves showing that, on average, the sample variance accurately estimates the true variance of the population from which the sample was drawn. This is achieved by demonstrating that the expected value of the sample variance equals the population variance, making it an unbiased estimator.


The sample variance is always smaller than the true value of the population variance is always larger than the true value of the population variance could be smaller equal to or?

yes, it can be smaller, equal or larger to the true value of the population varience.


Show that in simple random sampling the sample variance is an unbiased estimator of population variance?

It is a biased estimator. S.R.S leads to a biased sample variance but i.i.d random sampling leads to a unbiased sample variance.


Is there a proof that demonstrates the unbiasedness of the sample variance?

Yes, there is a mathematical proof that demonstrates the unbiasedness of the sample variance. This proof shows that the expected value of the sample variance is equal to the population variance, making it an unbiased estimator.


What would happen to the sampling distribution of the mean if you increased the sample size from 5 to 25?

The variance of the estimate for the mean would be reduced.


Can the variance of a sample be larger than the sample mean?

Yes, Mean is given by, E(X) sum of samples / no. of samples. Variance is Var.(X) = E(X^2) - [E(X)]^2. It is the 1st term which makes the variation of variance independent of mean. In other words, Variance gives a measure of how far the samples are spread out.


What is the sample variance of 5781010 and 14?

The variance is: 1.6709957376e+13


Is sample variance unbiased estimator of population variance?

No, it is biased.