1. Given any line, there are at least two points on the line. Call them A and B.
2. Given any line, there exists at least one point in the plane that is not on the line. Call that point C.
3. Given any two points (A and C and, then B and C) there exists a straight line joining them.
The point C is not on AB so AB and AC are distinct. Similarly, AB and BC are distinct so that there are three lines that meet, in pairs, at three vertices - and that is a triangle.
Two congruent triangles.. To prove it, use the SSS Postulate.
When trying to prove two triangles congruent, you can use SSS, SAS, ASA, AAS, HL, and HA patterns. However, the pattern A S S doesn't work. Instead of spelling or saying this word in class, you can refer to it as "the donkey theorem". You can look at the pattern in the two triangles and say "these two triangles are not congruent because of the donkey theorem." You CANNOT prove triangles incongruent with 'the donkey theorem', nor can you prove them congruent. It's mostly sort of a joke, you could say, but it's never useful. The reason is that if the two triangles ARE congruent, then of course there will be an unincluded congruent angle as well as two congruent sides. The theorem doesn't do anything left, right, forward or backward. It's not even really a theorem. :P
No. You can know all three angles of both and all you can say is that the triangles are similar. Or with any pair of congruent sides you can have an acute angle between them or an obtuse angle.
Suppose ABCD is a rectangle.Consider the two triangles ABC and ABDAB = DC (opposite sides of a rectangle)BC is common to both trianglesand angle ABC = 90 deg = angle DCBTherefore, by SAS, the two triangles are congruent and so AC = BD.
That the sides are equal in length and the interior angles are the same sizes
You can't use AAA to prove two triangles congruent because triangles can have the same measures of all its angles but be bigger or smaller, AAA could probably be used to prove two triangles are similar not congruent.
You can prove that to triangles are congruent with SSS, then use CPCTC to prove that two corresponding angles of those triangles are congruent.
27, but you will have to prove it.
You could prove two triangles are congruent by measuring each side of both triangles, and all three angles of each triangle. If the lengths of the sides are the same, and so are the angles, then the triangles are congruent... if not, then the triangles are not congruent. If the triangles have the exact same size and shape then they are congruent.
the existence of released energy
prove any two adjacent triangles as congruent
you measure all the sides
The answer depends on what the variables are.
LEGS
How do you proof of the existence of back emf ?
No. Any person trained in logic will tell you that 'you cannot prove a negative'. If you want to disprove the existence of fairies you first attempt to try and prove their existence. And the best you can do is to fail to prove it. The option to prove it always exists.
Two congruent triangles.. To prove it, use the SSS Postulate.