answersLogoWhite

0

(x+2)6

(x2 + 4x + 4)(x+2)4

(x2 + 4x + 4)(x2 + 4x + 4)(x+2)2

(x2 + 4x + 4)(x2 + 4x + 4)(x2 + 4x + 4)

(x4 + 4x3 + 4x2 + 4x3 + 16x2 + 16x + 4x2 + 16x + 16)(x2 + 4x + 4)

(x4 + 8x3 + 24x2 + 32x + 16)(x2 + 4x + 4)

(x6 + 4x5 + 4x4 + 8x5 + 32x4 + 32x3 + 24x4 + 96x3 + 96x2 + 32x3 + 128x2 +128x + 16x2 + 64x + 64)

(x6 + 12x5 + 60x4 + 160x3 + 240x2 + 192x +64)

the coefficeints are 1, 12, 60, 160, 240, and 192

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Is this 7x2-5x plus 2 a monomial binomial or trinomial?

The term with the highest power(s) of the unknown variable(s) is 7x2. The power is 2 so the expression is a binomial.


What are the terma coffients and constants for 7 plus 3d with the power of 2 plus d4?

Assuming that "terma coffients" stands for terms and coefficients, they areterms: 3d, d4 coefficients: 3, 4.


What is binomial expansion theorem?

We often come across the algebraic identity (a + b)2 = a2 + 2ab + b2. In expansions of smaller powers of a binomial expressions, it may be easy to actually calculate by working out the actual product. But with higher powers the work becomes very cumbersome.The binomial expansion theorem is a ready made formula to find the expansion of higher powers of a binomial expression.Let ( a + b) be a general binomial expression. The binomial expansion theorem states that if the expression is raised to the power of a positive integer n, then,(a + b)n = nC0an + nC1an-1 b+ nC2an-2 b2+ + nC3an-3 b3+ ………+ nCn-1abn-1+ + nCnbnThe coefficients in each term are called as binomial coefficients and are represented in combination formula. In general the value of the coefficientnCr = n!r!(n-r)!It may be interesting to note that there is a pattern in the binomial expansion, related to the binomial coefficients. The binomial coefficients at the same position from either end are equal. That is,nC0 = nCn nC1 = nCn-1 nC2 = nCn-2 and so on.The advantage of the binomial expansion theorem is any term in between can be figured out without even actually expanding.Since in the binomial expansion the exponent of b is 0 in the first term, the general term, term is defined as the (r+1)th b term and is given by Tr+1 = nCran-rbrThe middle term of a binomial expansion is [(n/2) + 1]th term if n is even. If n is odd, then terewill be two middle terms which are [(n+1)/2]th and [(n+3)/2]th terms.


What are the coefficients in this problem 3x - 4y plus 2?

They are 3 and 4


What is the sum of the coefficients of SF4 plus H20 plus H2sSO plus HF?

The sum of the coefficients of the chemical equation SF4 + H2O + H2SO + HF is 1 + 2 + 1 + 1 = 5.


Which is the correct set of coefficients for the equation below na2cr2o7 plus alpo4 na3po4 plus al2cr2o73?

3, 2, 2, 1


Is 2x plus 3 a monomial?

no it is a binomial. it has 2 terms: 2x and 3


What are the coefficients of 2x5-4x4 plus 4.5x2-17x?

2, 4, 4.5 and 17


What is the binomial of (x plus 3)(x minus 3)?

It is: x^2 -9


When the equation kmno4 plus mgs k2s plus mgmno42 is balanced what will be the correct set of coefficients?

The balanced equation is: 2KMnO4 + 3MgS -> K2S + 2Mg(MnO4)2


2x plus 3x plus 8x equals?

Add the coefficients of the variable term X. 2 + 3 + 8 = 13X


What is a binomial factor of the trinomial x2-16 plus 28?

(x - 14)(x - 2)