because math is simple.And math make me think
He Said It Was English And His Wrse Subject Is Math .
Math and Science.
Math
It's science
The difference between joint sets and disjoint sets is the number of elements in common. A disjoint set, in math, does not any elements in common. A joint set must have at least one number in common.
Sets are not disjants, they are disjoint. And two sets are disjoint if they have nothing in common. For example, the set {1,3,5} has nothing in common with the set {2,4,6}. So they are disjoint.
When two sets do not have any elements common between them,they are said to be disjoint.
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
Not necessarily. For a counterexample, A and C could be the same set.
Two events are disjoint if they cannot occur together. In set terms, their intersection is a null set.
Two sets are said to be "disjoint" if they have no common element - their intersection is the empty set. As far as I know, "joint" is NOT used in the sense of the opposite of disjoint, i.e., "not disjoint".
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
Two sets are disjoint if there are elements that belong to both. Two sets are overlapping if there is at least one elements that belongs to both.
No, only if both sets are empty. The intersection of disjoint sets is always empty.
ExplanationFormally, two sets A and B are disjoint if their intersection is the empty set, i.e. if This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if, given any two sets in the collection, those two sets are disjoint.Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : i ∈ I} is pairwise disjoint if for any i and j in I with i ≠ j,For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint. In fact, there are no two disjoint sets in this collection.A partition of a set X is any collection of non-empty subsets {Ai : i ∈ I} of X such that {Ai} are pairwise disjoint andSets that are not the same.
Disjoint sets are sets whose intersection, denoted by an inverted U), produces the null or the empty set. If a set is not disjoint, then it is called joint. [ex. M= {1,2,A} N = {4,5,B}. S intersection D is a null set, so M and N are disjoint sets.