0.688 moles*6.02x1023
=4.14x1023 Formula units
Ah, what a lovely question! To make a 0.10 M solution of AgNO3 in 500.0 mL, we can use the formula: moles = molarity x volume (in liters). First, convert 500.0 mL to liters by dividing by 1000. Then, multiply the molarity (0.10 M) by the volume in liters to find the moles of AgNO3 needed. Finally, convert moles to grams using the molar mass of AgNO3. Happy calculating!
The number of moles is 0,19.
Roughly 4 moles.
To determine the empirical formula of a metal oxide, first determine the moles of metal and oxygen in a given sample. Then, divide the moles of each element by the smallest number of moles to get a whole number ratio. This ratio represents the empirical formula of the metal oxide.
To find the number of silver atoms in 4.55 moles of AgNO3, first calculate the molar mass of AgNO3 which is 169.87 g/mol. Then set up a ratio using Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms. The calculation would be 4.55 moles x (6.022 x 10^23 atoms/mol) = 2.74 x 10^24 silver atoms in 4.55 moles of AgNO3.
To determine the number of formula units of AgNO3 in 147g of the compound, you first need to calculate the molar mass of AgNO3. The molar mass of AgNO3 is 169.87 g/mol. Next, divide the given mass (147g) by the molar mass to find the number of moles present in the sample. Finally, use Avogadro's number (6.022 x 10^23) to convert moles to formula units.
To find the number of moles in 4.5 g of AgNO3, you first need to determine the molar mass of AgNO3 which is 169.87 g/mol. Then you can use the formula: moles = mass / molar mass. Therefore, moles = 4.5 g / 169.87 g/mol ≈ 0.0265 moles.
Molarity = moles of solute/liters of solution or, for our purposes moles of solute = liters of solution * Molarity moles of AgNO3 = 0,50 liters * 4.0 M = 2.0 moles of AgNO3 needed --------------------------------------
To find the number of moles in 2.8881015 formula units of silver nitrate, you first need to know the molar mass of silver nitrate (AgNO3), which is 169.87 g/mol. Then, you can use the formula: moles = formula units / Avogadro's number. Therefore, moles = 2.8881015 / 6.022 x 10^23 = 4.79 x 10^-24 moles.
Ah, what a lovely question! To make a 0.10 M solution of AgNO3 in 500.0 mL, we can use the formula: moles = molarity x volume (in liters). First, convert 500.0 mL to liters by dividing by 1000. Then, multiply the molarity (0.10 M) by the volume in liters to find the moles of AgNO3 needed. Finally, convert moles to grams using the molar mass of AgNO3. Happy calculating!
To determine the number of moles in a substance, you can use the formula: moles mass / molar mass. Simply divide the mass of the substance by its molar mass to find the number of moles.
To find the number of moles in 4.50 grams of silver nitrate (AgNO3), you first need to calculate the molar mass of AgNO3. The molar mass of AgNO3 is 169.87 g/mol. Then, use the formula: moles = mass/molar mass. So, 4.50 grams of AgNO3 is equal to 0.0265 moles.
To find the number of moles, you need to divide the given mass (85 grams) by the molar mass of AgNO3 (169.87 g/mol). 85 grams of AgNO3 represents 0.500 moles.
Get moles silver nitrate. 255 grams AgNO3 (1 mole AgNO3/169.91 grams) = 1.5008 moles AgCO3 --------------------------------Now; Molarity = moles of solute/Liters of solution ( 1500 ml = 1.5 Liters ) Molarity = 1.5008 moles AgNO3/1.5 Liters = 1.00 M AgNO3 ---------------------
By definition, No. of moles = given mass/molecular mass; and also by definition, molar concentration of a solute means the number of moles of solute per liter of solution. Therefore, 25 mL of 0.068 M AgNO3 contains AgNO3 = (0.068 * 25) / 1000 = 0.0017 mol of AgNO3.The equation for the reaction is AgNO3 + HCl -> AgCl + HNO3, showing that 0.0017 mol of AgNO3 gives 0.0017 mol of AgCl. The molecular mass of AgCl = 107+35.5 = 143.5 gTherefore, the mass of AgCl produced by the reacion = No. of moles*molecular mass = .0017*143.5 = 0.24g, to the justified number of significant digits.100 mL of 0.068 M AgNO3 contains AgNO3 = 0.068 molSo,Therefore,
The number of moles is 0,19.
To determine the empirical formula from moles in a chemical compound, you first need to find the moles of each element present in the compound. Then, divide the moles of each element by the smallest number of moles to get the simplest whole number ratio. This ratio represents the empirical formula of the compound.