It takes up space like an "invisible" atom.
Chat with our AI personalities
The lone pair on an atom exerts repulsion on bonded pairs of electrons, which can distort the bond angles and contribute to the overall shape of the molecule. In some cases, the presence of a lone pair can cause a deviation from the expected bond angles in a molecule, leading to a specific geometry such as trigonal pyramidal or bent.
The lone pair forces bonding atoms away from itself
The lone pair pushes bonding electron pairs away.
There are two lone pairs around the central atom (Iodine) in IF5. The molecule has a trigonal bipyramidal shape with one lone pair in the axial position and one in the equatorial position.
The shape of Br2O is bent due to the lone pair on the central oxygen atom. The molecule is polar because the bromine atoms have a higher electronegativity than oxygen, causing an uneven distribution of electron density in the molecule.
A molecule with two bound groups and two lone pairs would have a bent or V-shape molecular geometry. This arrangement results in a bond angle less than 180 degrees between the two bound groups. An example of such a molecule is water (H2O).