It decreases. As the dimensions increase by a number, the surface area increases by the same number to the power of 2, but the volume increases by the same number to the power of 3, meaning that the volume increases faster than the surface area.
No. A sphere has the smallest surface to volume ratio possible and a basketball is nearly spherical in shape (it has surface dimpling and seams).
As cell volume increases, the ratio of cell surface area to cell volume decreases. This is because the surface area increases by a square factor while the volume increases by a cube factor. A higher surface area to volume ratio is more favorable for efficient nutrient exchange and waste removal in cells.
Yes, as the cell size increases, the surface-to-volume ratio decreases. This is because an increase in size results in a smaller surface area relative to the volume of the cell. This can impact the cell's ability to efficiently exchange nutrients and waste products with its environment.
When cells get smaller, the volume (as well as mass) decreases faster than the surface area so the surface:volume increases. Cells with a high surface:volume are more effective in receiving nutrients through diffusion. A cell (assume perfect sphere) with radius 2 has a surface area of 16pi and volume of 32pi/3. A cell with radius 3 has a surface area of 36pi and volume of 108pi/3. Also relatively speaking, volume can be thought of as y=x3 and surface area as y=x2. When there is a change in x, the change is more dramatic in the volume, so small cells have high ratios and large cells have low ratios.
As the volume of a cell increases, the surface area of the cell also increases, but at a slower rate. This can lead to a decrease in the surface area-to-volume ratio of the cell. A decreased surface area-to-volume ratio can impact the cell's ability to efficiently exchange materials with its environment, potentially affecting its overall functioning.
As a cell increases in size the volume increases much faster than the surface area. The possible answer is C.
The cell's ratio of surface area to volume would decrease if its volume increases more rapidly than its surface area.
As volume increases surface area increase, but the higher the volume the less surface area in the ratio. For example. A cube 1mmx1mmx1mm has volume of 1mm3 surface area of 6mm2 which is a ration of 1:6 and a cube of 2mmx2mmx2mm has a volume of 8mm3 and surface area of 24mm2 which is a ratio of 1:3.
No. A sphere has the smallest surface to volume ratio possible and a basketball is nearly spherical in shape (it has surface dimpling and seams).
As cell volume increases, the ratio of cell surface area to cell volume decreases. This is because the surface area increases by a square factor while the volume increases by a cube factor. A higher surface area to volume ratio is more favorable for efficient nutrient exchange and waste removal in cells.
As a cell grows larger, its volume increases faster than its surface area, leading to a decrease in the surface area-to-volume ratio. This can limit the cell's ability to efficiently exchange materials with its environment, affecting its overall functioning.
Yes, as the cell size increases, the surface-to-volume ratio decreases. This is because an increase in size results in a smaller surface area relative to the volume of the cell. This can impact the cell's ability to efficiently exchange nutrients and waste products with its environment.
As a cell gets bigger, its volume increases more rapidly than its surface area. This results in a decreased surface area to volume ratio. A smaller surface area to volume ratio can affect the cell's ability to efficiently exchange nutrients and wastes with its environment.
The ratio decreases.
The ratio decreases.
As the cell gets bigger, the surface to volume ratio gets smaller.
When cells get smaller, the volume (as well as mass) decreases faster than the surface area so the surface:volume increases. Cells with a high surface:volume are more effective in receiving nutrients through diffusion. A cell (assume perfect sphere) with radius 2 has a surface area of 16pi and volume of 32pi/3. A cell with radius 3 has a surface area of 36pi and volume of 108pi/3. Also relatively speaking, volume can be thought of as y=x3 and surface area as y=x2. When there is a change in x, the change is more dramatic in the volume, so small cells have high ratios and large cells have low ratios.