answersLogoWhite

0


Best Answer

The formula is vf = v0 + at

It means that the (final velocity) is equal to the (initial velocity) plus (acceleration multiplied by elapsed time). We can rearrange the equation to look like

t = (vf - v0) / a

Since initial velocity is zero, and we are assuming that Earth has acceleration due to gravity of 9.8 m/s2, we can sub the values into the equation and get

t = (147 m/s) / (9.8 m/s2)

t = 15 s

So it will take 15 seconds

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

1mo ago

Assuming the object is falling freely under gravity, the time it takes for the object to attain a velocity of 147 m/s can be calculated using the equation v = gt, where v is the final velocity, g is the acceleration due to gravity (approximately 9.81 m/s^2), and t is the time. Rearranging the equation to solve for time, t = v / g. Plugging in the values, t = 147 m/s / 9.81 m/s^2 ≈ 14.97 seconds.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How long will it take an object that falls from rest to attain a velocity of 147 m sec?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

How do you calculate the horizontal distance traveled by an object if you are given the horizontal velocity and time in the air?

You cannot because you do not know how long before the object falls to the ground and so stops moving.


As long as an object is not gaining or losing mass a net force on the object will cause a change in?

acceleration according to Newton's second law of motion, F=ma. The object will accelerate in the direction of the net force applied.


Does velocity increase impact?

Velocity is the speed something travels, so if anything travels at a higher rate of speed, the impact will be greater. No matter what the material speeding may appear to be, it will always impact harder with greater velocity. It's like shooting a paintball up close to a wall. The impact will be far harder than at long range, and a large splatter will appear on the wall. That's velocity for yah!


How do the magnitudes of weight and air drag compare?

The magnitude of weight is a force that pulls an object toward the Earth's center, while air drag is a force that opposes the motion of an object through the air. In most cases, the weight of an object is greater than the air drag it experiences. However, the magnitude of air drag can increase with velocity, eventually reaching a point where it equals the weight of the object, as in the case of terminal velocity.


Can an object be moving when its acceleration is zero?

Acceleration, which is the change of velocity over the change in time, will equal zero when there is no change in velocity. This can occur when an object is stationary or when an object is traveling at a constant velocity.

Related questions

How long will it take an object that falls from the rest to attain a velocity of 147 msec?

The time it takes for an object to fall from rest and attain a velocity of 147 m/s can be calculated using the kinematic equation: v = at, where v is the final velocity, a is the acceleration (due to gravity, approximately 9.81 m/s^2), and t is the time. Rearranging the equation to solve for time, t = v/a. Substituting the values, t = 147 m/s / 9.81 m/s^2 = approximately 15 seconds.


How do you calculate the horizontal distance traveled by an object if you are given the horizontal velocity and time in the air?

You cannot because you do not know how long before the object falls to the ground and so stops moving.


When the acceleration of an object is zero what is the velocity at the same time?

As long as acceleration is zero, the object's velocity is constant.


What determines whether an object falls to Earth's surface or orbits Earth?

The object's initial velocity and height above the Earth's surface determine whether it falls to the Earth's surface or stays in orbit. If the object's initial velocity is high enough and directed perpendicular to the surface, it can enter orbit around the Earth. If the velocity is too low or the object is at a low enough height, it will fall towards the Earth's surface.


What happens to the velocity of an accelerating object?

The velocity of an accelerating object increases over time as long as the acceleration is maintained.


Can the Inertia of an object change as the object's velocity is changing?

No. What we call 'inertia' is actually a manifestation of the object's mass,which doesn't change (as long as the object isn't moving at some seriousfraction of light speed).


If an object starts to accelerate?

If an object moved with constant acceleration it's velocity must ?


Does a body moving with uniform acceleration have momentum?

Yes, a body moving with uniform acceleration has momentum. Momentum is the product of an object's mass and its velocity, and acceleration is the rate of change of velocity. As long as the object is moving and has mass, it will have momentum.


As long as an object travels in a straight line at a steady speed it velocity is what?

If an object travels in a straight line at a steady speed, its velocity remains constant. The velocity in this case would be the speed of the object in a specified direction, which does not change over time.


In what directions are positive velocity's?

Positive velocity can be in any direction as long as the object is moving in that direction. For example, a car moving northward has a positive velocity in the north direction.


How much above earth distance an object do not falls?

An object will continue to orbit Earth at a certain distance above its surface, as long as its velocity counteracts the gravitational pull of Earth. This is known as achieving orbit, where the object remains in free fall around Earth due to a balance between its forward momentum and the pull of gravity.


Is it true that the steady speed reached by a skydiver is called the terminal velocity?

Yes, that's correct. Terminal velocity is the constant speed that a falling object, like a skydiver, eventually reaches when the force of air resistance is equal to the force of gravity pulling the object downward. At this point, the skydiver no longer accelerates and falls at a constant speed.