The reaction of carbon dioxide and potassium oxide is 4KO2 + 2CO2 = 2K2CO3 + 3O2. 156 grams of CO2 is 3.54 moles, which will produce 5.31 moles of O2.
Since acetylene (C2H2) has a stoichiometry of 2 moles of acetylene to produce 2 moles of CO2, three moles of acetylene would produce 3 moles of CO2. The reaction with excess oxygen ensures that all the acetylene is fully converted to CO2.
The reaction is:WO3 + 3 H2 = W + 3 H2OThree moles of hydrogen for one mole of wolfram.
0,044 moles of NH3 can be produced.
8 mol
First, calculate the moles of propanol (C3H7OH) using its molar mass. Then, use the balanced chemical equation for the combustion reaction of propanol to find the moles of carbon dioxide produced. Finally, convert moles of carbon dioxide to grams using its molar mass to find the mass produced.
Since acetylene (C2H2) has a stoichiometry of 2 moles of acetylene to produce 2 moles of CO2, three moles of acetylene would produce 3 moles of CO2. The reaction with excess oxygen ensures that all the acetylene is fully converted to CO2.
None, unless there is metallic potassium in the reaction mixture. Assuming excess potassium metal is present then 14 moles of KBr can be produced. 7BaBr2 + excess potassium -----> 14KBr + 7 Ba
The reaction is:WO3 + 3 H2 = W + 3 H2OThree moles of hydrogen for one mole of wolfram.
0,044 moles of NH3 can be produced.
It depends on the stoichiometry of the reaction. You need the balanced chemical equation to determine the number of moles of ammonia produced from the reaction of nitrogen.
30 moles
When 4 moles of aluminum react with an excess of chlorine gas (Cl2), 4 moles of aluminum chloride are produced because the balanced chemical equation for this reaction is: 2 Al + 3 Cl2 -> 2 AlCl3 Since the mole ratio between aluminum and aluminum chloride is 2:2, it means that for every 2 moles of aluminum, 2 moles of aluminum chloride are produced.
When 4 moles of aluminum react with an excess of chlorine gas, 4 moles of aluminum chloride are produced. This is because the balanced chemical equation for the reaction is: 2Al + 3Cl2 -> 2AlCl3 This means that 2 moles of aluminum react with 3 moles of chlorine gas to produce 2 moles of aluminum chloride, so 4 moles of aluminum will produce 4 moles of aluminum chloride.
To determine the moles of excess sulfuric acid left over after the reaction is complete, you need to compare the stoichiometry of the reactants. In this case, 2 moles of NH3 reacts with 1 mole of H2SO4. If you know the initial moles of NH3 and H2SO4 used in the reaction, you can calculate which one is in excess and how many moles of the excess reactant are left over.
8 mol
First, calculate the moles of propanol (C3H7OH) using its molar mass. Then, use the balanced chemical equation for the combustion reaction of propanol to find the moles of carbon dioxide produced. Finally, convert moles of carbon dioxide to grams using its molar mass to find the mass produced.
There are 18 moles of water produced in the reaction. This is determined by the stoichiometry of the balanced chemical equation, which shows that for every 2 moles of C8H18 consumed, 18 moles of H2O are produced.