answersLogoWhite

0

If the change in energy of electron is totally exhibited as a photon then the energy = h times frequency.

h = 6.626 x 10 to -34 J s

Simply multiply h and frequency you would get the energy in joule

User Avatar

Wiki User

10y ago

What else can I help you with?

Related Questions

If the photon has a frequency of 4 x 10-15 Hz how did the energy of the electron change?

4x 1015 Hz The electron lost 2.6 x 10-18 J of energy.


Electron X can change to a higher energy level or a lower energy level Which statement is true of electron X?

Electron X can transition between energy levels by either absorbing or emitting a photon. The energy change corresponds to the photon's energy (ΔE = hf), where h is Planck's constant and f is the frequency of the photon. The transitions between energy levels are quantized and follow the laws of quantum mechanics.


What does the change of an atom from an excited state to the ground state always require?

An atom emits a photon (particle of light) when transitioning from a ground state to its excited state. To obey conservation of energy, the energy gained by the atom when an electron moves to a lower energy level is equal to the energy it loses in emitting the photon. (The energy of a photon is E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the photon.) Conversely, when an atom absorbs a photon (as is the case in absorption spectra), the electron absorbing the photon moves to a higher energy level.


When sunlight excites electrons how do the electrons change?

Depending on the energy (frequency) of the specific photon hitting the electron, one of three events happens: nothing, the electron is excited, or the electron leaves the atom. If the energy of the photon very high, the electron can absorb the energy and escape the nucleus' pull. This is called ionization. If the energy of the photon lines up with the energy spacing in the atoms energy levels, the electron will move to a higher energy state, becoming excited. The electron then returns to its original energy level, releasing the energy as light. If the energy of the photon does not fall into one of these categories, the electron does not interact with it. In terms of actually changing the electron, it only changes in energy, not any other property.


The energy of a photon depends on what?

The energy of a photon depends on it's frequency


What is the relationship between photon frequency and the energy of a photon?

The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.


A change in wavelength produces what change on light?

Frequency, color, energy in each photon.


Which is the relationship between photon energy and frequency?

Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.


An electron gains 5.5 x 10-16 J of energy when a photon is absorbed What is the frequency of the photon that is absorbed?

8.3 x 1017 Hz


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


When an electron in atom changes energy states a photon is emitted If the photon has a wavelength of 550 nm how did the energy of the electron change?

The energy of the electron decreased as it moved to a lower energy state, emitting a photon with a wavelength of 550 nm. This decrease in energy corresponds to the difference in energy levels between the initial and final states of the electron transition. The energy of the photon is inversely proportional to its wavelength, so a longer wavelength photon corresponds to lower energy.


What is the energy of a photon?

the energy of a photon is h times f