p1.V1 / T1 = constant = p2.V2 / T2 (the 'Boyle&Gay-Lussac' Law)
250*15/100 = 500*30/ T2
T2 = 400K
Temperature. Think about it, if the molecules start heating up they start vibrating more, need more space for themselves, expand, and ultimately increase the pressure. PS I'm a PhD chemical engineer...
In a closed system with constant pressure and no input or output of heat, the gas temperature will remain constant. In that same system, if the pressure is increased, then the gas temperature will also increase. If pressure is decreased, then the gas temperature will decrease.
When air is increased in volume, the pressure decreases while the temperature remains constant. This relationship is described by Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume when the temperature is held constant. As the volume increases, the air molecules have more space to move around, leading to a lower pressure.
If temperature increases while volume remains constant, according to Charles's Law, pressure will increase proportionally. This is because the increased temperature will cause the gas molecules to move faster and exert more force on the walls of the container, resulting in an increase in pressure.
The new pressure will be six times greater than the original pressure. This is because pressure is directly proportional to the number of molecules and temperature in Kelvin, according to the ideal gas law. Since both the number of molecules and temperature have increased, the pressure will triple for the increase in molecules and double for the increase in temperature, resulting in a total increase of 6 times.
The pressure will increase if the volume remains the same.
If the temperature of a system is increased, but the volume remains constant, the pressure will increase. If Pressure is increased, then temperature will increase. They are directly proportional, as shown by the combined gas law equation, (V1P1)/T1=V2P2/T2
When the volume of a gas is increased, the pressure of the gas decreases while the temperature remains constant, assuming the gas is behaving ideally. This relationship is described by Boyle's Law, which states that pressure is inversely proportional to volume at constant temperature.
Temperature. Think about it, if the molecules start heating up they start vibrating more, need more space for themselves, expand, and ultimately increase the pressure. PS I'm a PhD chemical engineer...
In a closed system with constant pressure and no input or output of heat, the gas temperature will remain constant. In that same system, if the pressure is increased, then the gas temperature will also increase. If pressure is decreased, then the gas temperature will decrease.
Using the ideal gas law equation, we can calculate the new volume of the gas. At STP, the pressure is 1 atm, which means 50 atm is 50 times greater. So the new volume would be 1.55L / 50 = 0.031L, when the pressure is increased to 50 atm.
When air is increased in volume, the pressure decreases while the temperature remains constant. This relationship is described by Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume when the temperature is held constant. As the volume increases, the air molecules have more space to move around, leading to a lower pressure.
The pressure of the gas will decrease by a factor of four when the volume is expanded to four times its original volume at a constant temperature, according to Boyle's Law.
If temperature remains constant and the volume of gas increases, the pressure will decrease. This is described by Boyle's Law, which states that pressure and volume are inversely proportional when temperature is constant.
If temperature increases while volume remains constant, according to Charles's Law, pressure will increase proportionally. This is because the increased temperature will cause the gas molecules to move faster and exert more force on the walls of the container, resulting in an increase in pressure.
No, pressure is dependent on temperature. As temperature increases, the pressure of a gas also increases, assuming volume remains constant (Boyle's Law). If volume is not constant, then pressure and temperature are directly proportional (Charles's Law).
remains constant