To determine the frequency of a photon, you can use the equation E = hf, where E is the energy of the photon, h is Planck's constant (6.626 x 10^-34 Js), and f is the frequency. If the wavelength of the photon is given, you can use the equation c = λf, where c is the speed of light (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.
The frequency of a photon is given by f = c/λ, where c is the speed of light and λ is the wavelength of the photon. Since frequency and wavelength are inversely proportional, the 300 nm photon has a greater frequency than the 500 nm photon because it has a shorter wavelength.
To calculate the frequency of a photon, you can use the formula: frequency = speed of light / wavelength. The speed of light is approximately 3.00 x 10^8 m/s. Plugging in the values, the frequency of a photon with a wavelength of 2591 m would be approximately 1.16 x 10^5 Hz.
The frequency of the x-ray photon can be calculated using the equation: frequency = speed of light / wavelength. With a wavelength of 2.32 Å (2.32 x 10^(-10) m), the frequency is approximately 1.29 x 10^18 Hz. The energy of a photon can be calculated using the equation: energy = Planck's constant x frequency. With the frequency calculated, the energy of the x-ray photon is approximately 8.55 x 10^(-14) J.
To calculate the frequency of the photon, you can use the formula E = hf, where E is the energy difference between the two levels, h is Planck's constant, and f is the frequency. Once you have the frequency, you can use the formula c = λf to find the wavelength, where c is the speed of light and λ is the wavelength.
To arrange photons in order of increasing energy, you can use the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. Photons with higher frequency will have higher energy. So, simply compare the frequencies of the photons to determine their energy order.
The frequency of a photon can be calculated using the equation: frequency = speed of light / wavelength. Plugging in the values for speed of light and wavelength, the frequency of a photon with a wavelength of 565nm is approximately 5.31 x 10^14 Hz.
The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.
As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.
The frequency of a photon with a wavelength of 488.3 nm is approximately 6.15 x 10^14 Hz. The energy of this photon is approximately 2.54 eV.
The frequency of a photon with a wavelength of 781 nm is approximately 384 THz (terahertz).
The energy increases as the frequency increases.The frequency decreases as the wavelength increases.So, the energy decreases as the wavelength increases.
The energy of a photon depends on its frequency or wavelength. The energy is directly proportional to the frequency of the photon, meaning that higher frequency photons have higher energy levels.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
The energy of a photon can be calculated using the formula E=hf, where E is energy, h is Planck's constant (6.63 x 10^-34 J.s), and f is the frequency of the photon. Alternatively, you can use the formula E=hc/λ, where c is the speed of light (3.00 x 10^8 m/s) and λ is the wavelength of the photon.
wavelength : wavelength is the distance from crest of one wave to the crest of next frequency : the number of waves that passes a given point in one second energy : the amplitude or intensity of a wave energy and frequency is directly proportional to each other when energy is high frequency is also high wavelength and frequency or energy is inversly proportional to each other when wavelength is high frequency or energy is low
The wavelength of a photon can be calculated using the equation λ = c / f, where λ is the wavelength, c is the speed of light (approximately 3.00 x 10^8 m/s), and f is the frequency. Plugging in the values, the wavelength of a photon with a frequency of 6.56 Hz is approximately 4.57 x 10^7 meters.
The wavelength of a photon can be calculated using the formula: wavelength = speed of light / frequency. Given the frequency of 7.811014 Hz, the speed of light is approximately 3x10^8 m/s. Plugging in the values, the wavelength would be around 3.83 x 10^7 meters.