answersLogoWhite

0

i love my girl muah te amo oh yuh fancy huh that the answer wha wha

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

What does the slope of the line on a position versus time graph tell you about the objects speed?

The distance versus time graph shows the position of the object. The slope of the line shows the velocity of the object. The velocity is the direction and speed of an object. If your slope has a positive slant that means you are going in a positive direction. If the slope has a negative slant your object is going in a negative direction. If your slope is zero (a horizontal line) that means your object has stopped and is about to change directions. In case you didnt know a positive slant looks like this on a graph.... / a negative slant looks like this on a graph.... \ postive is like sloping up a hill negative is like falling down the hill


Graphical representation of motion?

Position-Time GraphYou can graph motion on a position vs time graph. On a position vs time graph, position is on the y-axis and time is on the x-axis. If the velocity is constant, the graph will be a straight line and the slope is average velocity. If the motion is accelerating, the graph will be a curved line.Velocity-Time GraphYou can also graph motion on a Velocity-Time graph. On a velocity vs time graph, velocity is on the y-axis, time is on the x-axis. If the graph is a straight line, velocity is constant and the slope is average acceleration. Also, on a velocity vs time graph, the area under the line is displacement.Refer to the related link for illustrations of the different graphs of motion and their meanings.


What kind of mathematical relationship exists between velocity and distance?

Velocity is the rate of change of distance over time. This relationship is described by the equation velocity = distance/time, where velocity is measured in units like meters per second, distance is measured in units like meters, and time is measured in units like seconds. As velocity increases, the distance covered in a given amount of time also increases.


What is the importance of uniform acceleration graph in physics what is instantaneous velocity?

Uniform acceleration graphs help visualize how an object's velocity changes over time. They show a constant rate of change in velocity, which can be used to calculate properties like displacement and time. Instantaneous velocity is the velocity of an object at a specific moment in time, representing the object's speed and direction at a given instant.


How is deceleration represented on a velocity per time graph?

It is radial the velocity in a direction towards or away from a fixed point of reference (the origin) at a given time. The velocity time graph takes no account of motion in a direction across the radial direction.

Related Questions

What does a zero velocity graph look like?

In a velocity-time graph it will be the time axis (where velocity = 0). On a distance-time graph it will be a line parallel to the time axis: distance = some constant (which may be 0).


What does the graph of distance vs time look like for something going a constant velocity?

It looks like a line steadily getting higher and higher


Why is the slope of a distance velocity squared graph straight and a distance velocity graph is not?

When acceleration is constant, one equation of kinematics is: (final velocity)^2 = 2(acceleration)(displacement) + (initial velocity)^2. When you are graphing this equation with displacement or position of the x-axis and (final velocity)^2 on the y-axis, the equation becomes: y = 2(acceleration)x + (initial velocity)^2. Since acceleration is constant, and there is only one initial velocity (so initial velocity is also constant), the equation becomes: y = constant*x + constant. This looks strangely like the equation of a line: y = mx + b. Therefore, the slope of a velocity squared - distance graph is constant, or there is a straight line. Now, when you graph a velocity - distance graph, the y axis is only velocity, not velocity squared. So if: v^2 = mx + b. Then: v = sqrt(mx + b). Or: y = sqrt(mx + b). This equation is not a straight line. For example, pretend m = 1 and b = 0. So the equation simplifies to: y = sqrt(x). Now, make a table of values and graph: x | y 1 | 1 4 | 2 9 | 3 etc. When you plot these points, the result is clearly NOT a straight line. Hope this helps!


What does the slope of the line on a position versus time graph tell you about the objects speed?

The distance versus time graph shows the position of the object. The slope of the line shows the velocity of the object. The velocity is the direction and speed of an object. If your slope has a positive slant that means you are going in a positive direction. If the slope has a negative slant your object is going in a negative direction. If your slope is zero (a horizontal line) that means your object has stopped and is about to change directions. In case you didnt know a positive slant looks like this on a graph.... / a negative slant looks like this on a graph.... \ postive is like sloping up a hill negative is like falling down the hill


What does a velocity and time graph look like?

indirect proportionality


Does terminal speed and terminal velocity are the same?

Yes, but only in free-fall. If I'm driving at 60 mph, I have a constant velocity, but it's not my "terminal velocity" in the sense that there is no limit to my acceleration caused by air friction. But yes, an object in free-fall reaches its terminal velocity when its velocity stops increasing (acceleration=0).


Is there a maximum velocity to a falling object?

Yes, there is a maximum velocity for a falling object, known as terminal velocity. Terminal velocity is reached when the force of air resistance on the falling object is equal to the force of gravity acting on it, resulting in a constant velocity. The terminal velocity varies depending on factors like the object's size, shape, and weight.


What is the difference between terminal speed and terminal velocity?

The difference between terminal speed and terminal velocity is really simple. Terminal speed can be used to refer to the maximum speed an object can reach before factors like friction prevent anymore speed to be gained. Terminal velocity, however, generally refers to the rate at which this speed was gained.


How fast is terminal velocity for a penny if it is in a vacuum?

If the penny is in a vaccum, the penny has no terminal velocity because verminal velocity is when the resistance against the falling penny is equal to the force of gravity. So if it is in a vaccum, it has no forces resisting the fall, and it has no terminal velocity.


Does rain reach terminal velocity?

No, raindrops do not reach terminal velocity because they are too small and have a low enough mass that air resistance slows them down before they can reach their maximum falling speed. Terminal velocity is typically reached by larger objects like skydivers or hailstones.


Graphical representation of motion?

Position-Time GraphYou can graph motion on a position vs time graph. On a position vs time graph, position is on the y-axis and time is on the x-axis. If the velocity is constant, the graph will be a straight line and the slope is average velocity. If the motion is accelerating, the graph will be a curved line.Velocity-Time GraphYou can also graph motion on a Velocity-Time graph. On a velocity vs time graph, velocity is on the y-axis, time is on the x-axis. If the graph is a straight line, velocity is constant and the slope is average acceleration. Also, on a velocity vs time graph, the area under the line is displacement.Refer to the related link for illustrations of the different graphs of motion and their meanings.


Can terminal velocity be changed?

Terminal velocity is determined by several factors including an object's shape, size, and weight, as well as external forces like air resistance. Terminal velocity can be altered by changing these factors, such as by increasing or decreasing an object's weight or by adjusting its shape to reduce air resistance.