The power to which a 'base number' (usually 10) has to be raised to produce a given number. as an example: Log (base 10) of 100 = 2 ............ because 10 raised to the power of 2 (or 10 squared) or 10 x 10 = 100 log (base 10) of 1000 = 3 ........... because 10 raised to the power of 3 (or 10 cubed) or 10 x 10 x10 = 1000 log (base 10) of 1000000000 = 9 ... because 10 raised to the powr of 9 or 10x10x10x10x10x10x10x10x10 = 1000000000 In a similar way log (base 2) of 16 = 4................. because 2x2x2x2 (2 raised to the power of 4) = 16 and so on.
Chat with our AI personalities
A logarithm is the inverse operation of exponentiation. It is used to find the power to which a fixed number (called the base) must be raised to produce a given number. Logarithms help simplify calculations involving very large or very small numbers.
A log with a subscript typically indicates the base of the logarithm. For example, "log₃(x)" means the logarithm of x in base 3. This notation is used to specify the base of the logarithm function.
The logarithm of a number less than 1 is negative. Therefore, -log 0.5 is the negative logarithm of 0.5 which is equal to -0.301.
In simple terms: The strength (or influence) of the magnet at the point measured.
To convert 0.19 into its natural logarithm (LN), you use the natural logarithm function, which is typically denoted as ln. You can calculate it using a scientific calculator or a programming language. The result for ln(0.19) is approximately -1.6607, indicating that 0.19 is less than 1, which results in a negative logarithm.
The acidity or basicity are expressed by pH (the negative logarithm of the activity of hydronium ion).