A beta particle is either an electron or a positron (antielectron) emitted from the nucleus of an atom during radioactive decay. It has a mass of approximately 1/1836 Atomic Mass unit and carries a single unit of negative (for electrons) or positive (for positrons) charge.
an alpha particle
The difference between a beta plus and beta minus particle is the electrical charge. The charges are equal, but opposite. The beta minus particle is an electron with a negative charge, while the beta plus particle is an anti-electron or positron with a positive charge.
In beta particle emission, a neutron in the nucleus converts into a proton, an electron (beta particle), and an antineutrino.
A beta particle is an electron (or positron) with high energy and speed.
The beta particle is an electron.
The strength of a beta particle is its ability to cross the absorber to reach the detector.Now the strength of a beta particle depends upon the energy of the beta particle and thickness of the absorber.
an alpha particle
The difference between a beta plus and beta minus particle is the electrical charge. The charges are equal, but opposite. The beta minus particle is an electron with a negative charge, while the beta plus particle is an anti-electron or positron with a positive charge.
Beta decay can change the composition of a nucleus by transforming a neutron into a proton, resulting in the emission of a beta particle (electron) and an antineutrino. This process increases the atomic number of the nucleus while keeping the mass number constant, resulting in a different element.
In beta particle emission, a neutron in the nucleus converts into a proton, an electron (beta particle), and an antineutrino.
negative, -1 to be precise since a beta particle is an electron
A beta particle is an electron (or positron) with high energy and speed.
A positron is a positively charged particle that is also a beta particle. It is the antimatter counterpart of the electron, with the same mass but opposite charge. Positrons are commonly produced in beta plus decay processes.
The beta particle is an electron.
Beta decay changes the composition of a nucleus by transforming a neutron into a proton, accompanied by the emission of a beta particle (electron or positron) and an antineutrino or neutrino. This process increases the atomic number of the nucleus while keeping the mass number constant, leading to the formation of a different element.
When an atom emits a beta particle, one of its neutrons is transformed into a proton, increasing the atomic number of the atom by 1. This results in the formation of a new element. The mass number remains the same as the beta particle carries away the excess energy.
A beta particle is either an electron, or a positron (aka "anti-electron").