Trigonal planar
trigonal planar
The molecular geometry and electronic structure of styrene and methyl methacrylate as well as corresponding radicals formed by the addition of a methyl radical to the -carbon of the monomer were determined using the density functional theory at the B3LYP/6-311+G** level. Results were in good agreement with the theoretical and experimental data available in the literature. Full optimized molecular geometry of methyl methacrylate showed the trans form of the molecule. Monomers transformed into corresponding radicals preserved the main structural parameters of substituents whereas bonds between substituents and adjacent radical carbon atoms shortened. It was found that the correlation of the theoretically calculated electronic parameters for monomers and the corresponding radicals with the Q and e parameters from the Alfrey-Price scheme strongly depends on the level of calculations. Application of the higher level of theory including the correlation effect changes the relationship discussed in the literature between energy (EY) of formation of a radical from the monomer, the experimental e parameter, and the Q parameter and monomer/average electronegativity, respectively. The total atomic spin density at the radical carbon atom correlated with the radical parameter P in the Alfrey-Price scheme was computed to be higher for the methoxycarbonyl-1-methyl-ethyl radical when compared with the 1-phenyl-propyl radical. These values are in good agreement with the localization energies and the P values determined from the kinetic measurements for macroradicals ending with styrene and methyl methacrylate monomer units. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3761-3769, 2001
(NO3)- has three single bonds.
The formula for the salt containing both Ca and NO3 ions would be Ca(NO3)2. This is because calcium (Ca) has a 2+ charge and nitrate (NO3) has a 1- charge, so to balance the charges, you need two NO3 ions for each Ca ion.
The formula for the ionic compound formed by magnesium ions (Mg2+) and nitrate ions (NO3-) is Mg(NO3)2. The formula for the ionic compound formed by calcium ions (Ca2+) and nitrate ions (NO3-) is Ca(NO3)2.
Trigonal Planar Electronic Geometry Geometry of Molecules: Trigonal Planar Three oxygen atoms are joined to the nitrogen atom in the NO3- ion to create a center atom. The configuration is trigonal planar, and the three oxygen atoms' bonds to the nitrogen atom have roughly 120-degree angles.
What is the electronic geometry of Bi_3? Enter the ... Thus, the total number of electrons in the molecule will be 24. There are no lone pairs in boron. Three electron domains are thus present in this molecule. Therefore, the electronic geometry of B I 3 is trigonal planar.
trigonal planar
The electronic geometry about the carbon atom is: tetrahedral The orbital hybridization about the carbon atom is: sp^3 The molecular geometry about the carbon atom is: tetrahedral
Tetrahedral.
Tetrahedral
tetrahedral
tetrahedral
Tetrahedral
The electron geometry ("Electronic Domain Geometry") for PF3 is tetrahedral. The molecular geometry, on the other hand, is Trigonal Pyramidal.
trigonal bipyramidal
Trigonal Planar