answersLogoWhite

0

The molecular geometry and electronic structure of styrene and methyl methacrylate as well as corresponding radicals formed by the addition of a methyl radical to the -carbon of the monomer were determined using the density functional theory at the B3LYP/6-311+G** level. Results were in good agreement with the theoretical and experimental data available in the literature. Full optimized molecular geometry of methyl methacrylate showed the trans form of the molecule. Monomers transformed into corresponding radicals preserved the main structural parameters of substituents whereas bonds between substituents and adjacent radical carbon atoms shortened. It was found that the correlation of the theoretically calculated electronic parameters for monomers and the corresponding radicals with the Q and e parameters from the Alfrey-Price scheme strongly depends on the level of calculations. Application of the higher level of theory including the correlation effect changes the relationship discussed in the literature between energy (EY) of formation of a radical from the monomer, the experimental e parameter, and the Q parameter and monomer/average electronegativity, respectively. The total atomic spin density at the radical carbon atom correlated with the radical parameter P in the Alfrey-Price scheme was computed to be higher for the methoxycarbonyl-1-methyl-ethyl radical when compared with the 1-phenyl-propyl radical. These values are in good agreement with the localization energies and the P values determined from the kinetic measurements for macroradicals ending with styrene and methyl methacrylate monomer units. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3761-3769, 2001

User Avatar

Wiki User

17y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
More answers

Molecular geometry refers to the arrangement of atoms in a molecule in three-dimensional space, taking into consideration the position of all atoms and lone pairs. Electronic geometry, on the other hand, refers to the arrangement of electron pairs around a central atom, including both bonding and non-bonding pairs. In many cases, the electronic geometry may differ from the molecular geometry due to the presence of lone pairs.

User Avatar

AnswerBot

11mo ago
User Avatar

The geometry of electronic and molecular pairs are the same when they are in lone pairs. However, one of the biggest differences between these two are that electronic pair geometry is determined by lone pairs and bonds, while molecular geometry is determined by bonded atoms.

User Avatar

Wiki User

10y ago
User Avatar

the electronic geometry gives the rough starting shape of the molecule but once the electron configuration is added it changes the shape of the molecule from the original el.ectronic geometry to the more complex molecular geometry which is a sub-division of the starting electronic geometry

User Avatar

Wiki User

14y ago
User Avatar

electron pair geometry and molecular geometry won't be the same if there are lone pairs involved.

User Avatar

Wiki User

10y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is the difference between molecular geometry and electronic geometry?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is the difference between Electron Geometry and Molecular Geometry and explain the circumstances under which they will not be the same?

Electron geometry describes the arrangement of electron pairs around a central atom in a molecule, based on the total number of electron pairs (bonding and nonbonding). Molecular geometry, on the other hand, describes the arrangement of atoms, taking into account only the positions of the atoms. They will not be the same when there are lone pairs of electrons on the central atom. In such cases, the electron geometry is determined by all electron pairs, whereas the molecular geometry considers only the positions of the atoms, leading to a difference.


What is the molecular geometry around the carbon in CF4 is?

The molecular geometry around the carbon in CF4 is tetrahedral. The carbon atom is bonded to four fluorine atoms, with the bond angles between the C-F bonds being approximately 109.5 degrees.


How to tell which is most polar?

To determine which molecule is the most polar, compare the electronegativity difference between the atoms in each molecule. The greater the electronegativity difference, the more polar the molecule. Additionally, look at the molecular geometry and symmetry of the molecule, as asymmetrical molecules tend to be more polar.


What is the molecular geometry on NH3?

The molecular geometry of NH3 (ammonia) is trigonal pyramidal. The nitrogen atom is at the center, with three hydrogen atoms forming a pyramidal shape around it.


Can molecular formula be used to show difference between isomers?

No, molecular formula alone cannot show the difference between isomers. Isomers have the same molecular formula but different structural arrangements of atoms. Additional information, such as structural formula or connectivity of atoms, is needed to differentiate between isomers.