The equation to find molar concentration is C= n/v (concentration= moles/volume). For 80g of glucose, you would first need to find the number of moles; n= m x mm (moles= mass x molar mass). Then you can input that number into the equation C= n/v.
Glucose concentration strips will work.
The boiling point of a solution can vary depending on the concentration of solute. For a dilute solution of glucose in water, the boiling point elevation is typically small and may not be easily measurable. However, pure glucose itself does not have a defined boiling point as it decomposes upon heating.
To prepare a 50mm glucose solution, you would need to dissolve 9g of glucose in enough water to make 100mL of solution. This would give you a solution with a concentration of 50mm (millimolar).
Another way to express the concentration of a 0.01 percent by weight glucose solution is to say it is a 100 parts per million (ppm) solution. This means there are 100 grams of glucose in every 1 million grams of solution.
The concentration is 69,3 g/L.
1M glucose means that 1 mole of glucose is dissolved in 1kg of water. Since 1M means 1 molal. And molality is equla to no.of moles of solute per kg of water.
Glucose concentration strips will work.
Yes, during process of osmoses the solvent from higher concentration to lower concentration moves through semipermeable membrane, the 2% solution has lower concentration of solute therefore higher concentration of solvent.
Glucose concentration strips will work.
Glucose solution is a homogeneous mixture because it is composed of glucose dissolved in water, making it uniform throughout.
yes
The balloon will contain a mixture of the 10% and 5% glucose solutions. Since water can pass through but not glucose, the glucose concentration inside the balloon will decrease over time as water moves from the lower concentration in the beaker to the higher concentration in the balloon through osmosis.
The boiling point of a solution can vary depending on the concentration of solute. For a dilute solution of glucose in water, the boiling point elevation is typically small and may not be easily measurable. However, pure glucose itself does not have a defined boiling point as it decomposes upon heating.
Some types of sugar solutions include sucrose solution (table sugar dissolved in water), glucose solution, fructose solution, and maltose solution. These solutions can vary in sweetness and application based on the type and concentration of sugar used.
Isotonic solution is very close to sea water in composition and also concentration. Glucose isotonic solution is an electrolyte solution used for re-hydration. It contains salt, water and glucose.
To prepare a 50mm glucose solution, you would need to dissolve 9g of glucose in enough water to make 100mL of solution. This would give you a solution with a concentration of 50mm (millimolar).
Another way to express the concentration of a 0.01 percent by weight glucose solution is to say it is a 100 parts per million (ppm) solution. This means there are 100 grams of glucose in every 1 million grams of solution.