answersLogoWhite

0

molal

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences
Related Questions

How can the freezing point depression method be used to calculate the molar mass of a solute in a solution?

The freezing point depression method can be used to calculate the molar mass of a solute in a solution by measuring the decrease in the freezing point of the solvent when the solute is added. By knowing the freezing point depression constant of the solvent and the amount of solute added, the molar mass of the solute can be calculated using the formula: molar mass (freezing point depression constant molality) / freezing point depression.


Molar mass by freezing point depression chemistry lab?

In a molar mass by freezing point depression lab, a known quantity of solute is added to a solvent, resulting in a lowered freezing point. By measuring the change in freezing point and knowing the constant for the solvent, the molar mass of the solute can be determined using the formula: ΔTf = Kf * m, where ΔTf is the freezing point depression, Kf is the cryoscopic constant, and m is the molality of the solution.


How do you calculate the molality from the freezing point?

To calculate molality from the freezing point, you can use the formula: molality (Kf Tf) / molar mass of solute. Here, Kf is the freezing point depression constant, Tf is the change in freezing point, and the molar mass of the solute is the mass of the solute in one mole.


How can the molar mass of a solute be determined using freezing point depression?

The molar mass of a solute can be determined using freezing point depression by measuring the change in freezing point of a solvent when the solute is added. By using the formula Tf Kf m, where Tf is the change in freezing point, Kf is the cryoscopic constant of the solvent, and m is the molality of the solution, the molar mass of the solute can be calculated.


How is molar mass determination achieved through the process of freezing point depression?

Molar mass determination through freezing point depression involves measuring the decrease in freezing point of a solvent when a solute is added. By comparing the change in freezing point to the known properties of the solvent, the molar mass of the solute can be calculated using the formula Tf Kf m, where Tf is the change in freezing point, Kf is the cryoscopic constant of the solvent, and m is the molality of the solute.


What is the relationship between freezing point depression and molar mass?

The relationship between freezing point depression and molar mass is that the freezing point depression is directly proportional to the molar mass of the solute. This means that as the molar mass of the solute increases, the freezing point depression also increases.


What is the relationship between the molar mass and freezing point depression of a substance?

The relationship between the molar mass and freezing point depression of a substance is that the freezing point depression is directly proportional to the molar mass of the solute. This means that as the molar mass of the solute increases, the freezing point depression also increases.


What is the relationship between the molar mass and freezing point depression in lab answers?

The relationship between molar mass and freezing point depression in lab answers is that the freezing point depression is directly proportional to the molar mass of the solute. This means that as the molar mass of the solute increases, the freezing point depression also increases.


How can one determine the molar mass of a substance using the freezing point depression method?

To determine the molar mass of a substance using the freezing point depression method, you can measure the decrease in freezing point when a solute is added to a solvent. By knowing the amount of solute added and the decrease in freezing point, you can calculate the molar mass of the solute using the formula: molar mass (mass of solute / moles of solute) (freezing point depression / change in freezing point).


How can one find the molality of a solution given its freezing point?

To find the molality of a solution given its freezing point, you can use the formula: molality (Kf Tf) / molar mass of solvent. Here, Kf is the freezing point depression constant of the solvent, Tf is the freezing point depression, and the molar mass of the solvent is the mass of one mole of the solvent. By plugging in these values, you can calculate the molality of the solution.


How is the determination of molar mass achieved through the phenomenon of freezing point depression?

The determination of molar mass is achieved through freezing point depression by measuring the decrease in the freezing point of a solvent when a solute is added. This decrease is directly proportional to the molality of the solute, allowing for the calculation of the molar mass of the solute using the formula: Tf Kf m i, where Tf is the freezing point depression, Kf is the cryoscopic constant of the solvent, m is the molality of the solute, and i is the van't Hoff factor.


Can the freezing point be lower than its boiling point in a constant pressure?

At a constant pressure, the freezing point is always going to be lower than the boiling point.