No, hydrobromic acid (HBr) is not classified as an electrolyte because it primarily exists as a molecular compound rather than dissociating into ions in water, which is a characteristic of electrolytes.
if molecular shape is symmatrical then its non-polar but if it is non symmatrical then its polar.
The polarity of a molecule is influenced by its molecular symmetry. Symmetric molecules tend to be nonpolar because any charges or dipoles within the molecule are canceled out by symmetry, while asymmetric molecules are more likely to be polar due to unbalanced distributions of charges or dipoles. Overall, molecular symmetry affects the overall polarity of a molecule.
The molecular geometry of a compound helps to determine polarity because, it indicates the number of lone pairs on a central atom thus giving it specified angles and polarity (only if there are lone pairs because if there are no lone pairs on the central atom, them it is non-polar).
The bond in the molecule O2 is covalent.
Yes, HBr is a molecular compound. It consists of covalent bonds between hydrogen and bromine atoms, forming molecules of HBr.
Yes, for the most part HBr is molecular. It has some slight ionic character as well.
molecular
Fluorodiiodoborane
No, hydrobromic acid (HBr) is not classified as an electrolyte because it primarily exists as a molecular compound rather than dissociating into ions in water, which is a characteristic of electrolytes.
Molecular
HBr primarily exhibits dipole-dipole interactions due to the polarity of the H-Br bond. Additionally, HBr can also experience dispersion forces, caused by temporary dipoles that occur in all molecules.
The intermolecular forces of HBr are London dispersion forces and dipole-dipole interactions. London dispersion forces are the weakest intermolecular forces and occur between all atoms and molecules. Dipole-dipole interactions arise due to the polarity of the HBr molecule.
To find the number of moles in 186 grams of HBr, you need to divide the given mass by the molar mass of HBr. The molar mass of HBr is approximately 80.91 g/mol. So, 186 grams of HBr is equal to 2.30 moles.
if molecular shape is symmatrical then its non-polar but if it is non symmatrical then its polar.
The polarity of a molecule is influenced by its molecular symmetry. Symmetric molecules tend to be nonpolar because any charges or dipoles within the molecule are canceled out by symmetry, while asymmetric molecules are more likely to be polar due to unbalanced distributions of charges or dipoles. Overall, molecular symmetry affects the overall polarity of a molecule.
Hydrogen chloride (HCl) will effuse faster than hydrogen bromide (HBr) because HCl has a lower molar mass than HBr. This means HCl particles have higher average speeds, allowing them to pass through a small opening more quickly than HBr particles.