There are many kinds of scientists with a variety of specialties. For example, read the below as it is particular to Geoscientists.
Geoscientists study the composition, structure, and other physical aspects of the Earth. They study the Earth's geologic past and present by using sophisticated instruments to analyze the composition of earth, rock, and water. Many geoscientists help to search for Natural Resources such as groundwater, metals, and petroleum. Others work closely with environmental and other scientists to preserve and clean up the environment. Geoscientists usually study and work in one of several closely related fields of geoscience. Geologists study the composition, processes, and history of the Earth. They try to find out how rocks were formed and what has happened to them since their formation. They also study the evolution of life by analyzing plant and animal fossils. Geophysicists use the principles of physics, mathematics, and chemistry to study not only the Earth's surface, but also its internal composition, ground and surface waters, atmosphere, oceans, and magnetic, electrical, and gravitational forces. Within these two major disciplines of geology and geophysics are numerous subspecialties. For example, petroleum geologists map the subsurface of the ocean or land as they explore the terrain for oil and gas deposits. They use sophisticated instrumentation and computers to interpret geological information. Engineering geologists apply geologic principles to the fields of civil and environmental engineering, offering advice on major construction projects and assisting in environmental remediation and natural hazard-reduction projects. Mineralogists analyze and classify minerals and precious stones according to their composition and structure. They study the environment surrounding rocks in order to find new mineral resources. Sedimentologists study the nature, origin, distribution, and alteration of sediments, such as sand, silt, and mud. These sediments may contain oil, gas, coal, and many other mineral deposits. Paleontologists study fossils found in geological formations to trace the evolution of plant and animal life and the geologic history of the Earth. Stratigraphers examine the formation and layering of rocks to understand the environment which formed them. Volcanologists investigate volcanoes and volcanic phenomena to try to predict the potential for future eruptions and hazards to human health and welfare. Glacial geologists study the physical properties and movement of glaciers and ice sheets. Geochemists study the nature and distribution of chemical elements in groundwater and earth materials. Geophysicists specialize in areas such as geodesy, seismology, and magnetic geophysics. Geodesists study the Earth's size, shape, gravitational field, tides, polar motion, and rotation. Seismologists interpret data from seismographs and other geophysical instruments to detect earthquakes and locate earthquake-related faults. Geomagnetists measure the Earth's magnetic field and use measurements taken over the past few centuries to devise theoretical models that explain the Earth's origin. Paleomagnetists interpret fossil magnetization in rocks and sediments from the continents and oceans to record the spreading of the sea floor, the wandering of the continents, and the many reversals of polarity that the Earth's magnetic field has undergone through time. Other geophysicists study atmospheric sciences and space physics. (See the statement on atmospheric scientists, and physicists and astronomers, elsewhere in the Handbook.) Oceanographers use their knowledge of geology and geophysics, in addition to Biology and chemistry, to study the world's oceans and coastal waters. They study the motion and circulation of the ocean waters; the physical and chemical properties of the oceans; and how these properties affect coastal areas, climate, and weather. Oceanographers are further broken down according to their areas of expertise. For example, physical oceanographers study the tides, waves, currents, temperatures, density, and salinity of the ocean. They examine the interaction of various forms of energy, such as light, radar, sound, heat, and wind, with the sea, in addition to investigating the relationship between the sea, weather, and climate. Chemical oceanographers study the distribution of chemical compounds and chemical interactions that occur in the ocean and on the sea floor. They may investigate how pollution affects the chemistry of the ocean. Geological and geophysical oceanographers study the topographic features and the physical makeup of the ocean floor. Their knowledge can help companies find oil and gas off coastal waters. (Biological oceanographers, often called marine biologists, study the distribution and migration patterns of the many diverse forms of sea life in the ocean; the statement on biological scientists discusses this occupation elsewhere in the Handbook.) Geoscientists in research positions with the Federal Government or in colleges and universities frequently are required to design programs and write grant proposals in order to fund their research. Geoscientists in consulting jobs face similar pressures to market their skills and write proposals so that they will have steady work. Work environment. Geoscientists can spend a large part of their time in the field, identifying and examining rocks, studying information collected by remote sensing instruments in satellites, conducting geological surveys, constructing field maps, and using instruments to measure the Earth's gravity and magnetic field. They often perform seismic studies, for example, which involve bouncing energy waves off buried layers of rock, to search for oil and gas or to understand the structure of the subsurface layers. Similarly, they use seismic signals generated by an earthquake to determine the earthquake's location and intensity. In laboratories, geologists and geophysicists examine the chemical and physical properties of specimens. They study fossil remains of animal and plant life or experiment with the flow of water and oil through rocks. Some geoscientists spend the majority of their time in an office, but many others divide their time between fieldwork and office or laboratory work. Work at remote field sites is common. Many geoscientists, such as volcanologists, often take field trips that involve physical activity. Geoscientists in the field may work in warm or cold climates and in all kinds of weather. In their research, they may dig or chip with a hammer, scoop with a net, and carry equipment in a backpack. Oceanographers may spend considerable time at sea on academic research ships. Geologists frequently travel to remote field sites by helicopter or 4-wheel-drive vehicles and cover large areas on foot. Many exploration geologists and geophysicists work in foreign countries, sometimes in remote areas and under difficult conditions. Travel often is required to meet with prospective clients or investors. Fieldwork often requires working long hours.
The above is only one of many options.
Source: U.S. Department of Labor
When you are asked what your strongest personal qualities are in an interview, be sure to stress all of your best qualities. For example, you could say you are conscientious, you are a hard worker, you are loyal, and able to work well independently.
soft skills are a persons personal qualities
all i need to know is if there is a famouse scientist in ornithology??
None really, if you play violent video games that might get to your head and determine your personal qualities. I LIKE FISH
He studied the characteristics like long stems and short stems. He also studied when the genes in one plant jumps a generation.
you need paticence
creativehardworkingfocusedartisticimaginative
nice
There are many personal qualities that a nutritionist needs such as kindness. Nutritionists must also be able to relate to the people they advise.
Being courteous is one important personal quality that club employees need. Other qualities that are needed is being organized, polite, friendly, and helpful.
There are a number of personal qualities or skills you need to be an IT expert. Some of them include interest in computer, desire to explore various angles of IT, self-discipline, aggression and so much more.
what are the personal qualities a senate should have
he should be 25 age .
ORGANIZATION, INTUITION, MOTIVATION AND CALM.
The stereotypical scientist will use personal logic and reasoning to describe the results of a hypothesis. The real scientist would prefer to use more empirical means to obtain scientific proof.
Aristotelian toughs about personal qualities of auditor
They need to be able to persuade people to do things. They need to be able to persuade people to do things.