answersLogoWhite

0


Best Answer

the condition that a group of quantities connected by operators gives the same result whatever their grouping, as long as their order remains the same, e.g., ( a × b) × c = a × ( b × c).

User Avatar

Wiki User

βˆ™ 10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Define associative property
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What are properties of addition?

There are two properties of addition. The COMMUTATIVE property states that the order in which the addition is carried out does not matter. In symbolic terms, a + b = b + a The ASSOCIATIVE property states that the order in which the operation is carried out does not matter. Symbolically, (a + b) + c = a + (b + c) and so, without ambiguity, either can be written as a + b + c. That is IT. No more! The DISTRIBUTIVE property is a property of multiplication over addition (OR subtraction), not a property of addition. The existence of of an IDENTITY and an ADDITIVE INVERSE are properties of the set over which addition is defined; again not a property of addition. For example, you can define addition on all positive integers which will have the commutative and associative properties but the identity (zero) and additive inverses (negative numbers) are undefined as far as the set is concerned.


Define distributive property?

booty


Define association in math terms?

Association is a property of arithmetic operations. The associative property states that the order in which two or more operations are carried out does not affect the result. Thus, (a + b) + c = a + b + c and a + (b + c) = a + b + c so you can write a + b + c without ambiguity. Note that a - (b - c) is NOT the same as (a - b) - c [unless c = 0].


How do you define and identify Zero property of multiplication?

Any number times zero is zero. a x 0 = 0


Define density property for rational numbers?

There are infinitely many rational numbers between any two rational rational numbers (no matter how close).

Related questions

For a associative- mapped cache a main memory address is viewed as consisting of two fieldsList and define the two fields?

tag word


What are properties of addition?

There are two properties of addition. The COMMUTATIVE property states that the order in which the addition is carried out does not matter. In symbolic terms, a + b = b + a The ASSOCIATIVE property states that the order in which the operation is carried out does not matter. Symbolically, (a + b) + c = a + (b + c) and so, without ambiguity, either can be written as a + b + c. That is IT. No more! The DISTRIBUTIVE property is a property of multiplication over addition (OR subtraction), not a property of addition. The existence of of an IDENTITY and an ADDITIVE INVERSE are properties of the set over which addition is defined; again not a property of addition. For example, you can define addition on all positive integers which will have the commutative and associative properties but the identity (zero) and additive inverses (negative numbers) are undefined as far as the set is concerned.


What is three properties of addition?

There are two properties of addition. The COMMUTATIVE property states that the order in which the addition is carried out does not matter. In symbolic terms, a + b = b + a The ASSOCIATIVE property states that the order in which the operation is carried out does not matter. Symbolically, (a + b) + c = a + (b + c) and so, without ambiguity, either can be written as a + b + c. That is IT. No more! The DISTRIBUTIVE property is a property of multiplication over addition (OR subtraction), not a property of addition. The existence of of an IDENTITY and an ADDITIVE INVERSE are properties of the set over which addition is defined; again not a property of addition. For example, you can define addition on all positive integers which will have the commutative and associative properties but the identity (zero) and additive inverses (negative numbers) are undefined as far as the set is concerned.


Define distributive property?

booty


What is breathing property of external paint define?

what


Define association in math terms?

Association is a property of arithmetic operations. The associative property states that the order in which two or more operations are carried out does not affect the result. Thus, (a + b) + c = a + b + c and a + (b + c) = a + b + c so you can write a + b + c without ambiguity. Note that a - (b - c) is NOT the same as (a - b) - c [unless c = 0].


Define the physical property and chemical property as they pertain to crime scene investigations?

Thug Life


How would you define the property?

an attribute, quality, or characteristic of something.


How do you stop a charging order being put on a property?

Not familiar with the term "charging order. Please define it, and what relationship it has to 'property.'


How does the state of North Carolina define real property?

Real Property - All land and the buildings, structures or improvements on that land


Who needs property insurance?

Anyone who owns a property, rents a property, apartment, condo, or farm.AnswerAnyone who owns property. And I define property as ANYTHING and EVERYTHING you own. This includes renters- they need property insurance to cover their belongings...


What is the distributive property the commutative property the associate property and the identity property?

The COMMUTATIVE property states that the order of the arguments of an operation does not matter. In symbolic terms, for elements a and b and for the operation ~, a ~ b = b ~ a The ASSOCIATIVE property states that the order in which the operation is carried out does not matter. Symbolically, for elements a, b and c, (a ~ b) ~ c = a ~ (b ~ c) and so, without ambiguity, either can be written as a ~ b ~ c. The DISTRIBUTIVE property is a property of two operations, for example, of multiplication over addition. It is not the property of a single operation. For operations ~ and # and elements a, b and c, symbolically, this means that a ~ (b # c) = a ~ b # a ~ c. The existence of an IDENTITY is a property of the set over which the operation ~ is defined; not a property of operation itself. Symbolically, if the identity exists, it is a unique element, denoted by i, such that a ~ i = a = i ~ a for all a in the set. For example, you can define addition on all positive integers which will have the commutative and associative properties but the identity (zero) and additive inverses (negative numbers) are undefined as far as the set is concerned. I have deliberately chosen ~ and # to represent the operations rather than addition or multiplication because there are circumstances in which these properties do not apply to multiplication (for example for matrices), and there are many other operations that they can apply to.