[object Object]
The 90th term of the arithmetic sequence is 461
It is a + 8d where a is the first term and d is the common difference.
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
In an arithmetic sequence the same number (positive or negative) is added to each term to get to the next term.In a geometric sequence the same number (positive or negative) is multiplied into each term to get to the next term.A geometric sequence uses multiplicative and divisive formulas while an arithmetic uses additive and subtractive formulas.
10,341
The 90th term of the arithmetic sequence is 461
To find the seventh term of a sequence, you need to identify the pattern or formula governing the sequence. If it's an arithmetic sequence, you can use the formula ( a_n = a_1 + (n-1)d ), where ( a_1 ) is the first term, ( d ) is the common difference, and ( n ) is the term number. For a geometric sequence, use ( a_n = a_1 \cdot r^{(n-1)} ), where ( r ) is the common ratio. Substitute ( n = 7 ) into the appropriate formula to find the seventh term.
It is an arithmetic sequence if you can establish that the difference between any term in the sequence and the one before it has a constant value.
The nth term of an arithmetic sequence = a + [(n - 1) X d]
An arithmetic sequence
Arithmetic Sequence
Arithmetic- the number increases by 10 every term.
One number, such as 7101316 does not define a sequence.
The one number, 491419 does not constitute a sequence!
It is a + 8d where a is the first term and d is the common difference.
What is the 14th term in the arithmetic sequence in which the first is 100 and the common difference is -4? a14= a + 13d = 100 + 13(-4) = 48
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r