I would guess 250 grams.
Using those exact quantities, we can calculate that the mass is precisely 10 grams.
Density = Mass/Volume. You cannot calculate density without knowing BOTH mass and volume.
density=mass/volume volume=mass/density
Density is a physical property that describes the amount of mass in a given volume. To calculate density, you divide the mass of the object by its volume. In this case, the density of the object with a mass of 35 grams and a volume of 7 cubic centimeters would be 35g / 7cm^3 = 5 g/cm^3.
You don't, because they're different types of units. Microns measure length and grams measure mass.
To determine the number of moles of sodium carbonate in 2 grams of hydrated sodium carbonate, we first need to calculate the molar mass of Na2CO3·xH2O. Once we have the molar mass, we can use the formula: Moles = Mass / Molar mass. Given that hydrated sodium carbonate has the molar mass of Na2CO3·xH2O, we can determine the number of moles in 2 grams of the compound.
Grams are mass. There's no calculation involved.
To find the amount of ammonium carbonate needed, use the formula: grams = moles * molar mass. First, calculate moles using the given volume and molarity: moles = volume (L) * molarity (mol/L). Then, multiply the moles by the molar mass of ammonium carbonate (96.09 g/mol) to find the grams needed.
1. Calculate formula massCalcium carbonate has chemical formula CaCO3.Its formula mass is 40.1 + 12.0 + 3(16.0) = 100.12. Apply formula to calculate number of moles of CaCO3Amount of CaCO3= mass/formula mass= 50/100.1= 0.50mol
The equation given shows that each formula mass of calcium carbonate produces one formula mass of CO2. The gram formula masses of calcium carbonate and carbon dioxide are 100.09 and 44.01 respectively. Therefore, to produce 4.4 grams of carbon dioxide, 4.4(100.09/44.01), or 10 grams of calcium carbonate, to the justified number of significant digits, are needed.
The molar mass of calcium carbonate is 100.09 g/mol and the molar mass of hydrochloric acid is 36.46 g/mol. Using the mole ratio of the balanced chemical equation, you can calculate the amount of calcium carbonate that can be dissolved by 5.00 grams of hydrochloric acid, which is approximately 12.43 grams.
The molar mass of anhydrous sodium carbonate is 105,9888 g.
For a partly ionically bonded compound such as calcium carbonate, the gram formula mass is substituted for a mole, which technically exists only for purely covalently bonded compounds. The gram formula mass for calcium carbonate is 100.09. Therefore, 200 grams constitutes 200/100.09 or 2.00 gram formula masses of calcium carbonate, to the justified number of significant digits.
The molar mass of sodium hydrogen carbonate (NaHCO3) is approximately 84 grams per mole. Therefore, the mass of 1.00 mole of sodium hydrogen carbonate would be 84 grams.
To determine the number of moles of carbonate ions in 0.500g, you first need to calculate the molar mass of carbonate (CO3^-2). The molar mass of carbonate is 60.01 g/mol. Divide the given mass (0.500g) by the molar mass to find the number of moles. This will give you approximately 0.0083 moles of carbonate ions in 0.500g.
To calculate the weight of a mole of an atom in grams (molar mass), you add up the atomic masses of all the atoms in one mole of the substance. This can be found on the periodic table and is usually given in atomic mass units (amu). The molar mass is expressed in grams per mole.
To calculate the percentage of calcium carbonate in the mixture, first find the total mass of the mixture by summing the individual masses given (1.05g + 0.69g + 1.82g = 3.56g). Then, calculate the percentage of calcium carbonate by dividing the mass of calcium carbonate by the total mass and multiplying by 100 (1.82g / 3.56g * 100 ≈ 51%). So, the percentage of calcium carbonate in the mixture is approximately 51%.