28/sqrt(8) multiply top and bottom by sqrt(8) = 28*sqrt(8)/[sqrt(8)*sqrt(8)] = 28*sqrt(8)/8 = 7*sqrt(8)/2 But sqrt(8) = sqrt(4*2)= sqrt(4)*sqrt(2) = ±2*sqrt(2) then 7*sqrt(8)/2 = ±7*2*sqrt(2)/2 = ±7*sqrt(2)
3.5
0.0357
28
3.5
4
28/sqrt(8) multiply top and bottom by sqrt(8) = 28*sqrt(8)/[sqrt(8)*sqrt(8)] = 28*sqrt(8)/8 = 7*sqrt(8)/2 But sqrt(8) = sqrt(4*2)= sqrt(4)*sqrt(2) = ±2*sqrt(2) then 7*sqrt(8)/2 = ±7*2*sqrt(2)/2 = ±7*sqrt(2)
3.5
Yes. Sqrt(8) and sqrt(2) are both irrational. sqrt(8)/sqrt(2) = sqrt(8/2) = sqrt(4) = 2 is rational.
0.2963
0.0357
8/sqrt(2) to get exact answer rationalize the denominator by this form of 1 sqrt(2)/sqrt(2) * 8/sqrt(2) = 8*sqrt(2)/2 or, the decimal answer = 5.656854249
28
Expressed as a surd, 4 sqrt(6) / 4 sqrt(8) = 4 sqrt(3).
2.8571
3.5
sqrt(8)/[2*sqrt(3)] = 2*sqrt(2)/[2*sqrt(3)] = sqrt(2)/sqrt(3) = sqrt(2/3)