answersLogoWhite

0

Find I = ∫ sec³ x dx. The answer is I = ½ [ log(sec x + tan x) + sec x tan x ]. * Here is how we may find it: Letting s = sec x, and t = tan x, we have, s² = 1 + t², dt = s² dx = (1 + t²) dx, and ds = st dx. Then, we obtain, dI = s³ dx = s dt. * Now, d(st) = s dt + t ds = dI + t ds = dI + st² dx = dI + s(s² - 1)dx = dI + s³ dx - s dx = 2dI - s dx; whence, 2dI = s dx + d(st). * Also, we have, s = (s² + st) / (s + t), whence s dx = (s² + st) dx / (s + t) = (dt + ds) / (s + t) = d(s + t) / (s + t) = d log(s + t). This gives us, 2dI = d log(s + t) + d(st). Integrating, we easily obtain, I = ½ [ log(s + t) + st ], which is the answer we sought. * Checking that we have arrived at the correct answer, we differentiate back: d(st) / dx = (st)'= st' + ts' = s³ + st² = 2s³ - s. d log(s + t) / dx = log'(s + t) = (s + t)' / (s + t) = (st + s²) / (s + t) = s. Thus, 2I' = [ st + log(s + t) ]' = 2s³; and I' = ½ [ st + log(s + t) ]' = s³, confirming that our answer is correct.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
ReneRene
Change my mind. I dare you.
Chat with Rene
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: How does one find the integral of secant cubed of x dx?
Write your answer...
Submit
Still have questions?
magnify glass
imp