Find I = ∫ sec³ x dx. The answer is I = ½ [ log(sec x + tan x) + sec x tan x ]. * Here is how we may find it: Letting s = sec x, and t = tan x, we have, s² = 1 + t², dt = s² dx = (1 + t²) dx, and ds = st dx. Then, we obtain, dI = s³ dx = s dt. * Now, d(st) = s dt + t ds = dI + t ds = dI + st² dx = dI + s(s² - 1)dx = dI + s³ dx - s dx = 2dI - s dx; whence, 2dI = s dx + d(st). * Also, we have, s = (s² + st) / (s + t), whence s dx = (s² + st) dx / (s + t) = (dt + ds) / (s + t) = d(s + t) / (s + t) = d log(s + t). This gives us, 2dI = d log(s + t) + d(st). Integrating, we easily obtain, I = ½ [ log(s + t) + st ], which is the answer we sought. * Checking that we have arrived at the correct answer, we differentiate back: d(st) / dx = (st)'= st' + ts' = s³ + st² = 2s³ - s. d log(s + t) / dx = log'(s + t) = (s + t)' / (s + t) = (st + s²) / (s + t) = s. Thus, 2I' = [ st + log(s + t) ]' = 2s³; and I' = ½ [ st + log(s + t) ]' = s³, confirming that our answer is correct.
Chat with our AI personalities
Neither secant nor tangent pass through the center of a circle. A secant passes through one point on the circle and the tangent passes through two points on a circle.
false
Yes, it can as long as it is not the tangent line of the outermost circle. If it is tangent to any of the inner circles it will always cross the outer circles at two points--so it is their secant line--whereas the tangent of the outermost circle is secant to no circle because there are no more circles beyond that last one.
One
There are two main definitions. One defines the integral of a function as an "antiderivative", that is, the opposite of the derivative of a function. The other definition refers to an integral of a function as being the area under the curve for that function.